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Abstract. Optical endomicroscopy (OEM) is a novel real-time imaging technol-
ogy that provides endoscopic images at the microscopic level. Clinical OEM pro-
cedures generate large datasets making their post procedural analysis a subjective 
and laborious task. There has been effort to automatically classify OEM frame 
sequences into relevant classes in aid of a fast and reliable diagnosis. Most exist-
ing classification approaches adopt established texture metrics, such as Local Bi-
nary Patterns (LBPs) derived from the regularly sampled grid images. However, 
due to the nature of image transmission through coherent fibre bundles, raw OEM 
data are sparsely and irregularly sampled, post-processed to a regularly sampled 
grid image format. This paper adapts Local Binary Patterns, a commonly used 
image texture descriptor, taking into consideration the sparse, irregular sampling 
imposed by the imaging fibre bundle on OEM images. The performance of 
Sparse Irregular Local Binary Patterns (SILBP) is assessed in conjunction with 
widely used classifiers, including Support Vector Machines, Random Forests and 
Linear Discriminant Analysis, for the detection of uninformative frames (i.e. 
noise and motion-artefacts) within pulmonary OEM frame sequences. Unin-
formative frames can comprise a considerable proportion of a dataset, increasing 
the resources required to analyse the data and impacting on any automated quan-
tification analysis. SILBPs achieve comparable performance to the optimal LBPs 
(> ͻʹ% overall accuracy), while employing < ͳ͵% of the associated data. 

Keywords: Optical endomicroscopy, texture analysis, irregular sampling, local 
binary patterns, frame classification. 

1 Introduction 

Optical endomicroscopy (OEM) is an emerging imaging tool used both clinically and 
pre-clinically in the pulmonary, urological and the gastro-intestinal tracts. The technol-
ogy employs a proximal illumination unit linked to an interface with a flexible multi-
core optical fibre bundle. The miniaturised fibre bundle is passed through the working 
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channel of endoscopes enabling microscopic imaging at its distal end. Probe-based con-
focal laser endomicroscopy (pCLE) is currently the most widely used platform and the 
only OEM methodology approved for clinical use. pCLE employs a single colour prox-
imal laser scanning illumination (most commonly at 488nm). Yet, there is a plethora of 
flexible, versatile and low-cost OEM architectures currently under development and 
evaluation, employing LED illumination sources [1], capable of real-time imaging at 
multiple acquisition wavelengths [2]. 

In pulmonary OEM, auto-fluorescence (at 488nm) generated through the abundant 
elastin and collagen has enabled the exploration of the distal pulmonary tract [3] as well 
as the assessment of the respiratory bronchioles and alveolar gas exchanging units [4].  
OEM has been used clinically in the lung for the detection of lung cancer [5] and has 
been used to assess the distal lung [6, 7] including the imaging of parenchymal lung 
diseases [8]. Furthermore, there has been an effort to develop molecularly targeted flu-
orescent SmartProbes that can bind and amplify fluorescence in the presence of inflam-
mation [9], bacteria [10] and fibrogenesis [4]. 

 

Fig. 1. Example pulmonary OEM images containing (a) pure noise due to loss of contact with 
tissue, (b) low contrast and mostly linear bronchus strands, (c-d) alveoli elastin strands, healthy 
and pathological respectively. 

Clinical pulmonary OEM data acquisition tends to generate large image sequences 
that form a long continuous scene, rendering the process of their manual analysis labo-
rious and highly subjective. In particular, within these OEM sequences there are frames 
that image the airways (Fig. 1.b), or the alveoli elastin strands (healthy or pathological), 
see Fig. 1.c-d. Furthermore, there are frames that contain only noise (Fig. 1.a), mostly 
due to the lack of contact of the fibre with a fluorescent target. Similarly, there are frame 
sequences where the spatial movement is very large when compared to the temporal 
rate of acquisition. This results in motion-artefacts (Fig. 2), expressed as either de-
formed anatomical structures, or spatial discontinuity for temporally adjacent frames. 
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Such frames contain little information of value and are therefore referred to as “unin-
formative frames”. There have recently been a number of studies attempting to group 
OEM images in two or more  classes such as differentiating between informative and 
uninformative frames [11], or normal and abnormal elastin frames [12-14]. Frame clas-
sification / parsing can be beneficial to the diagnostic process, reducing the associated 
human/computational resources, while enabling more targeted and objective image 
quantification/interpretation. Yet, all these studies have utilised texture descriptors 
based on regularly sampled, grid images. However, in raw OEM images, due to trans-
mission of the data through a coherent fibre bundle, the sampling is sparse and irregular. 
This is a well-known limitation in OEM imaging with a number of proposed solutions 
for the reconstruction of regular, gridded images from the sparse captured data [15].  

 

Fig. 2. Example frame sequences of (a-c) motion-artefacts as deformed structures, (d-f) motion-
artefacts as spatial discontinuity in temporally adjacent frames, and (g-i) large movements. 

This paper makes the following contributions: (i) it investigates the effect of sparse, 
irregular sampling (and subsequent image reconstruction) imposed by the fibre bundle 
structure on the frame classification via standard texture descriptors such as Local Bi-
nary Patterns (LBPs) and Gray Level Co-occurrence Matrices (GLCMs); (ii) it pro-
poses an adaptation of LBPs utilising explicit knowledge of this sparse irregular sam-
pling in an attempt to reduce the required computational resources. Similar to Mesh-
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LBP [16], a set of vertices is triangulated to a mesh. However, unlike Mesh-LBP, in-
formation solely from the sparse and irregularly distributed vertices is employed. These 
texture descriptors, along with commonly used classifiers, are employed to disassociate 
between informative and uninformative frames. Uninformative frames can amount to a 
substantial proportion (likely > ʹͷ%) of a dataset, potentially (i) prolonging the off-
line assessment, and (ii) diluting the results of any post-procedural image analysis. 
There is therefore a need for an automated approach to detect and remove such frames.  

2 Methodology 

The task of disassociating between informative and uninformative frames was formu-
lated as a classification problem on a feature space comprising of texture descriptors 
derived from the OEM frame sequences. Three well-established classifiers were used 
(Random Forests, Support Vector Machines and Linear Discriminant Analysis). Simi-
larly, commonly used texture descriptors such as LBPs and GLCMs, along with Sparse 
Irregular Local Binary Patterns (SILBPs), an adaptation of LBPs for sparse and irregu-
larly sampled OEM images, were employed.  

Video Pre-processing. Prior to any analysis, each video was (i) contrast enhanced en-
suring a common dynamic range across all data, and (ii) cropped, maintaining the larg-
est square region (͵͸Ͳ × ͵͸Ͳ pixels) within the circular field of view (FOV) as seen in 
Fig. 1. The remaining 4 segments (each ͻ% of the circular FOV) were not included in 
the texture estimations and the subsequent frame classification. This decision was based 
in the assumption that, if the central square region of a frame was identified as pure-
noise or a motion-artefact, a small structure in any of the 4 excluded subsections would 
not be sufficient to reinstate the frame as an informative frame. 

2.1 Texture Descriptors 

Local Binary Patterns (LBPs). Let ܫሺݔ, ,ݕ ݔ ሻ be a greyscale image sequence, withݐ ∈[ͳ, ݕ ,[ܰ ∈ [ͳ, ݐ and [ܯ ∈ [ͳ,  indicating the pixel location (x - column and y - row) [ܭ
and the frame number respectively. As described in [17], for each pixel ݌ in a frame ܫ𝑡 = ,ݔሺܫ ,ݕ ܤܮ ሻሺ௫,௬ሻ∈[ଵ,ே]×[ଵ,ெ], a binary vectorݐ ௅ܲ,𝑅 of length ܮ was constructed by 
thresholding ܮ equally-spaced neighbours located on a circle of radius ܴ around the 
central pixel ݌௖ by estimating  

ܤܮ  �ܲ�௅,𝑅ሺ݌௖ሻ = ∑ ݏ ቀܫ𝑡(ݔ௣𝑖 , (௣𝑖ݕ − ௣𝑐ݔ)𝑡ܫ , ௣𝑐)ቁݕ ʹ௜  ௅−ଵ௜=଴ ,  (1) 

 where ݏሺݒሻ =  {ͳ, ݒ ݂݅ ≥ ͲͲ, ݒ ݂݅ < Ͳ  

with ܫ𝑡(ݔ௣𝑐 , ௣𝑖ݔ)𝑡ܫ ௣𝑐) andݕ ,  ௖݌ ௣𝑖) representing the image intensity of the central pixelݕ
and its local neighbours ݌௜, where ݅ ∈ [Ͳ, ܮ − ͳ], respectively. In other words, a local 
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5 

neighbor ݌௜ of value ܫ𝑡(ݔ௣𝑖 , ௣𝑐ݔ)𝑡ܫ ௣𝑖) on a circle of radius ܴ was assigned 0 if smaller thanݕ , -௣𝑐), and 1 otherwise, making the constructed binary vectors invariant to monݕ
otonic image intensity transformations. Uniform binary codes were derived, reducing 
the dimensionality of the feature space as well as a means of implementing a simple, 
rotation invariant descriptor. In particular, uniform LBPs were defined as patterns with 
at most two bit-wise transitions, either from 0 to 1 or 1 to 0. Uniform codes constituted 
more than ͻͲ% of all binary codes in the available OEM dataset. Uniform binary pat-
terns were made rotation invariant by representing them using the number of elements 
with value 1 in each associated uniform vector of length ܮ, resulting in ܮ + ͳ distinct 
values (0 to ܮ). The remaining non-uniform patterns were encoded with the value ܮ +ͳ. Finally, the encoded values were aggregated in a histogram ܺሺݐሻ of ܮ + ʹ bins, 
which characterised the current frame ܫ𝑡. Each histogram was considered as a point in 
the ܮ + ʹ dimensional space and passed to the next stage for classification. 

Sparse Irregular Local Binary Patterns (SILBPs). Let ܥ = [ܿଵ, ܿଶ, … , ܿ𝑃], where ௝ܿ = ሺݔ௝ , ݆ ௝ሻ andݕ ∈ [ͳ, ܲ], be the core centroids for each individual core within the 
imaging fibre bundle (Fig. 3). Delaunay Triangulation was employed to derive a con-
nectivity list ܶܦሺܥሻ of the point set containing ሺܲ − ʹሻ unique triangles (Fig. 3.b). De-
launay Triangulation offers a number of attractive properties, including (i) connecting 
points in the nearest-neighbour manner, (ii) maximising the minimum angle of all the 
angles of the triangles (avoiding sliver triangles), and (iii) ensuring that a circle circum-
scribing any triangle does not contain any other point in its interior. These properties 
make Delaunay Triangulation an attractive approach for interpolating across the sparse, 
quasi hexagonal sampling of a multicore fibre bundle, generating an associated regu-
larly sampled rectangular grid [15].  

For each core ܿ within the fibre bundle, the ሺݔ,  ሻ coordinates associated with theݕ
rth -order neighbours in ܶܦሺܥሻ were estimated as ܰ𝑟 = [݊ଵ 𝑟 , ݊ଶ 𝑟 , … , ݊௞,𝑟 ], a collection 
of coordinate vectors ݊ 𝑟, with ݇ being the number of rth -order neighbours of ܿ (Fig. 
3.b). In theory, the imaging fibre bundles are constructed in a hexagonal structure. 
However, inhomogeneities in the construction result in a varying number neighboring 
cores. In particular, as illustrated in Fig. 4.a, most cores amongst the fibre bundles used 
throughout this study had between 5 and 7 1st order neighbours, with 6 neighbours being 
the most common occurrence. Similar variations were observed for remaining rth order 
neighbours. In order to replicate the vector notation of rth order neighbours to each 
pixel employed by the LBPs in regular grid images, for each core ܿ (Fig. 3.c): 

1. The 2D image plane was divided in ݈ = ͺ ×  ;equiangular segments ݎ
2. A vector ܰ ′𝑟 = [݊′ଵ 𝑟 , ݊′ଶ 𝑟 , … , ݊௟,𝑟] of length ݈ = ͺ ×  ;was created ݎ
3. For each equiangular segment (in anticlockwise direction) ߠ = [ͳ, ݈], ݊ ′𝜃 𝑟 =  𝜇ሺ �ܰ�𝑟ሻ, 

where ܰ 𝜃𝑟 contained the cores of ܰ𝑟 falling within the segment ߠ and 𝜇 is the asso-
ciated average value. 

In a similar fashion to ܤܮ ௅ܲ,𝑅, for each core ܿ in frame ܫ, a binary vector ܵܤܮܫ ௟ܲ ,𝑟 of 
length ݈  was constructed by thresholding the rth order neighbouring cores around the 
central core by estimating  
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ܤܮܫܵ  ௟ܲ ,𝑟ሺܿሻ = ∑ ݏ ܫ) ቀݔ௡′i 𝑟 , ௡′i 𝑟ቁݕ − ௖ݔሺܫ , (௖ሻݕ ʹ௜ ,௅−ଵ௜=଴  (2) 

 where ݏሺݒሻ =  {ͳ, ݒ ݂݅ ≥ ͲͲ, ݒ ݂݅ < Ͳ  

with ܫሺݔ௖ , ܫ ௖ሻ andݕ ቀݔ௡′i 𝑟 , -௡′i 𝑟ቁ representing the image intensity of the central core loݕ

cation and its local neighbours in ܰ′𝑟 respectively. For segments including no cores ܫ ቀݔ௡′𝑖 𝑟 , ௡′𝑖 𝑟ݕ ቁ = Ͳ.ͷ ∗ ܫ) ቀݔ௡′𝑖−1 𝑟 , ௡′𝑖−1 𝑟ݕ ቁ + ܫ ቀݔ௡′𝑖+1 𝑟 , ௡′𝑖+1 𝑟ݕ ቁ). No two consecutive 

segments without a core were observed and considering the measured number of neigh-
bouring cores (Fig. 4.a) and the core distribution characteristics within a fibre bundle, 
such occurrence is highly unlikely. Similarly to LPBs, the encoded values describing 
frame ܫ𝑡. were aggregated in histogram ܻሺݐሻ  of ݈  + ʹ bins. 

 

Fig. 3. (a) OEM frame of healthy lung elastin strands. (b) Zoomed-in region of interest with 
individual cores highlighted, as well as a central core (blue) along with its 1st (red) and 2nd (green) 
order neighbours estimated from the associated Delaunay Triangulation. (c) Illustrative example 
of 1st order neighbours core connectivity and spread, along with their relative position in the 
equiangular segments used in SILBPs. 

The Gray-Level Co-occurrence Matrix (GLCMs). The Gray-Level Co-occurrence 
Matrix [18] 𝐺𝑡 for frame ܫ𝑡 = ,ݔሺܫ ,ݕ ܤ ሻሺ௫,௬ሻ∈[ଵ,ே]×[ଵ,ெ] was defined as aݐ ×  matrix ܤ

 𝐺𝑡𝛥௫,𝛥௬ሺߟ, ሻߞ  = ∑ ∑ {ͳ, ,ݔሺܫ ݂݅ ,ݕ ሻݐ = ݔሺܫ ݀݊ܽ ߟ + 𝛥ݔ, ݕ + 𝛥ݕ, ሻݐ = ,Ͳߞ ெ௬=ଵே௫=ଵ                                                              ݁ݏ݅ݓݎℎ݁ݐ݋  (3) 

where, ܤ was the number of grey-levels within the image (16 bit), ߟ and ߞ were inten-
sity levels, ݔ and ݕ were the spatial positions in the image ܫ𝑡, and 𝛥ݔ and 𝛥ݕ were the 
spatial offsets (in number of pixels) utilised to estimate the GLCM 𝐺𝑡. To achieve ro-
tational invariance of the relevant texture measures, 𝐺𝑡 was estimated as the mean 
GLCM for offset pairs {ሺ𝛥ݔ, Ͳሻ, ሺ𝛥ݔ, 𝛥ݕሻ, ሺͲ, 𝛥ݕሻ, ሺ−𝛥ݔ, 𝛥ݕሻ}, corresponding to a sin-
gle pixel offset at directions (Ͳ°, Ͷͷ°, ͻͲ° and ͳ͵ͷ°). The probability of each co-occur-
ring pair was estimated as 𝐺𝑡௡௢𝑟௠ =  𝐺𝑡 ݊⁄ , where n was the sum of all elements in 𝐺𝑡. 
Related texture metrics as described in [18] including Contrast, Energy, Homogeneity, 
Entropy, Maximum Probability, Mean intensity and intensity Standard Deviation were 
derived, defining a 7-dimensional feature space ܼሺݐሻ. 
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Features for motion artefact detection. The direct texture values were employed to 
distinguish between informative and pure noise frames. On the other hand, the frame-
by-frame texture variability ܶ݁݁ݎݑݐݔ’ = ሻݐሺ݁ݎݑݐݔ݁ܶ − ݐሺ݁ݎݑݐݔ݁ܶ − ͳሻ was used to 
detect motion artefacts, with ܶ݁݁ݎݑݐݔ ∈ [ܺ, ܻ, ܼ] corresponding to one of GLCMs, (ܺ) 
LBPs (ܻ) or SILBPs (ܼ ) extracted from the data at frame number ݐ ∈ [ͳ,  .[ܭ
2.2 Classifiers 

Support Vector Machines (SVM). Support Vector Machines (SVMs) performs a bi-
nary classification task by finding an optimal hyperplane in the feature space, maximis-
ing the distance between the decision boundary and nearest training point from each 
class [19]. For ݑ௠ and ݒ௠ representing a single observation and its associated label in 
the multi-dimensional feature space of the training set, SVM employs a linear model of 
the form ݂ ሺݑ௠ሻ = ߚ௠ݑ + ܾ where ܾ  is the bias, and ߚ the normal vector to the hyper-
plane, known as the decision boundary. In an attempt to find the best separating hyper-
plane,  ߚ and ܾ  that constitute the perpendicular distance between the decision boundary 
and its nearest point as high as possible are estimated. To avoid overfitting the non-
separable dataset and resulting in poor generalisation performance, a soft margin is de-
fined by introducing a slack variable 𝜉 > Ͳ and penalty parameter ܥ. The new optimi-
sation problem is therefore formulated as follows  

 ݉݅݊𝛽,௕,𝜉 ቀܥ ∑ 𝜉௠௠ + ଵଶ ௠ሻݑ௠݂ሺݒ ଶቁ, such that‖ߚ‖ ≥ ͳ − 𝜉௠ (4) 

where ݉ = [ͳ, . . , ܳ], ܳ being the size of the training set, and the parameter ܥ > Ͳ 
(called the box constraint) controlling the trade-off between the margin and the slack 
variable penalty, which compensates between the hard margin and soft margin. 

Random Forests (RF). Random forests [20] are an ensemble learning method for clas-
sification (and regression) that combines decision tree learning and tree bagging in or-
der to correct for the overfitting to the training set tendency of the former approach. 
Each decision tree is formed by creating a split using the best predictive variable se-
lected from a random subset of the training set until the leaf node has too few samples 
to split. After training, the classification decision is obtained by taking the majority vote 
of all the outputs of individual decision trees. In this study, a random forest implemen-
tation was employed comprising of 200 trees, with a minimum number of leaf node 
observations set to 1 (default) and ݂݈ݎ݋݋(√ܳ) randomly selected features in each split, 
with ܳ being size of the whole training set. 

Linear Discriminant Analysis (LDA). Fisher’s discriminant analysis, commonly re-
ferred to as Linear Discriminant Analysis (LDA) is a simple dimensionality reduction 
approach (through linear transformation of the feature space) that has found application 
as a linear classifier, capable of separating amongst data of two or more classes [21, 
22]. In particular, LDA projects data from the multi-dimensional feature space into a 
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vector space that maximises between-class distance (scatter matrix) ܵ𝐵 while minimis-
ing within-class distance (scatter matrix) ܵ𝑊 through maximising objective function ܬሺߛሻ = ሺߛ𝑇ܵ𝐵ߛሻ ሺߛ𝑇ܵ𝑊ߛሻ⁄ , where ߛ is the optimal projection vector. The discri-
minant hyperplane is normal to ߛ and the associated decision criterion (location of hy-
perplane) is estimated as a threshold on ߛ. ݔ > 𝜔 for some threshold constant 𝜔. 

3 Data Analysis 

A total of 9 OEM image sequences (8Hz) of the distal lung were used for the training 
and testing of the proposed methodology. All data were obtained as part of a larger 
database (126 subjects) during routine investigation for indeterminate pulmonary nod-
ules (< ͵Ͳ݉݉) at the Columbus Lung Institute, Indiana, USA.  Approval for the study, 
which generated the data studied in this paper, was granted by the Western Institutional 
Review Board. All of the data used in this paper were acquired by a single expert op-
erator using a 488nm CellvizioTM with a ͳ.Ͷ݉݉ lateral diameter and a ͸ͲͲµ݉ field-
of-view AlveoflexTM fibre, (Mauna Kea Technologies, Paris, France), and were stored 
in the proprietary .mkt format. Of the original database, 43 subjects were rejected due 
to (i) short duration of sequences (< ͳͲ frames), (ii) corrupted data (i.e. not readable, 
misaligned / out-of-focus fibre), or (iii) lack of distal lung frames. Of the remaining 
videos, 9 were randomly selected as a training and testing set (averaging 627 frames 
per video) with no other subjective criteria (such as image quality) that could potentially 
bias the proposed algorithms. A 9-fold cross validation was employed, separating data 
at video level and consequently preventing potentially correlated frames included in 
both training and testing sets biasing the classification performance.   

Table 1. Sizes (number of frames) of the overall dataset and the manually annotated sub-classes. 

Total number 
of frames 

Informative 
frames 

Sub-sampled (1:9) 
informative frames 

Noise frames Motion artefacts 

5645 5046 561 404 195 

Prior to any processing, an experienced investigator manually annotated each indi-
vidual frame in the dataset as normal or pure-noise. Moreover, due to the more subjec-
tive nature of the task, two investigators independently annotated each individual frame 
in the dataset as normal or motion-artefact. A frame was assigned the motion-artefact 
label if both investigators had annotated it as such. The resulting binary annotations 
were used as the gold standard for the subsequent evaluation of the proposed algorithm. 
Table 1 summarises the relevant sizes (in number of frames) of the available data. Due 
to the large class imbalance (> ͳͲ: ͳ ratio) in the annotated frames, and considering the 
discriminative nature of the classifiers employed in this study [23], the training sets 
were adjusted by uniform sub-sampling of the informative frames with a ͳ: ͻ ratio. Data 
sub-sampling also reduced any redundancies in the training set due to potential high 
correlation between consecutive frames. The effectiveness of the proposed approach in 
detecting uninformative frames was quantitatively assessed by estimating the accuracy, 
sensitivity and specificity against manual detection.  
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4 Results and Discussion 

Fig. 4.b illustrates the distribution of distances (in number of pixels) between each core 
within a fibre bundle and its immediate (1st order) neighbouring cores. The majority of 
the cores are spaced 2 to 4 pixels apart, with just under 3 pixels being the most com-
monplace occurrence. The inter-core distance appears to have a direct effect on the 
performance of LPBs in the disassociation between informative and pure noise frames. 
As shown in Table 2, there is a substantial increase in the classification performance 
(accuracy) for ܴ = -Ͷ pixels with best performance achieved for a radius of 3 pix ݋ݐ ʹ
els. Similar behavior was observed in the GLCM estimation with optimal classification 
performance using a combination of the 3 and 4 pixels step. These results are indicative 
of the potential detrimental effect of extracting texture descriptors from sparsely sam-
pled and subsequently reconstructed data such as OEM images. Consequently, estimat-
ing the texture descriptors’ parameters based on the associated fibre bundle character-
istics can enhance the classification performance. 

 

Fig. 4. (a) Distribution of the number of the 1st order neighbouring cores for each core in a fibre 
bundle. (b) Distribution of distances (in pixels) between each core and its 1st order neighbours. 

Table 2. Informative Vs Noise frames classification accuracy for LBPs of increasing radius. 
Random forest classifier employed (best classification performance). 

 R=1 R=2 R=3 R=4 

Accuracy 93.0% 98.2% 98.7% 98.1% 

Table 3 enables a comparison, in terms of classification performance (accuracy), 
across the combinations of different texture metrics and classifiers described in this 
study. For GLCM and LBPs the optimal parameters associated with the fibre bundle 
were employed. On the other hand, SILBPs used only immediate (1st order) neighbour-
ing cores for the derivation of texture information. Employing only neighbouring core 
values removed some of the uncertainty introduced by the reconstructed pixels (used in 
LBPs and GLCMs) within the regular grid image. On the other hand, some uncertainty 
was introduced to the SILBP texture metric due to potential variations in distance be-
tween central and neighboring cores (Fig. 4.b). As demonstrated by Table 3, all three 
texture descriptors perform very similarly in distinguishing between informative and 
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uninformative frames. There is a marginal drop in classification accuracy associated 
with SILBP when compared to GLCM3,4 and LBP3. Yet, each ͵͸Ͳ × ͵͸Ͳ pixel region 
of interest (> ͳʹͻܭ pixels) analysed corresponds to just over ͳ͸ܭ cores, accounting 
for ͳʹ.͹% of the original information. Consequently, SILBPs can provide a viable al-
ternative to commonly used texture metrics such as GLCMs and LBPs for applications 
were computational resources are scarce. In particular, it is expected to provide a valu-
able tool for incorporating frame classification functionality in real-time the software n 
of OEM imaging platforms, where driving the hardware, capturing, storing, pre-pro-
cessing and displaying data compete for and sometimes drain the available resources.  

Table 3. Classification accuracy across different texture metrics and classifiers. (* positive class) 

 Informative* Vs Pure Noise  Informative* Vs Motion Blur 
 GLCM3,4 LBP3 SILBP GLCM3,4 LBP3 SILBP 

RF 98.7% 98.7% 98.2% 95.9% 96.2% 95.9% 

LDA 98.5% 98.5% 96.9% 96.1% 96.4% 96.2% 

SVM 98.2% 98.4% 97.1% 95.8% 96.1% 96.0% 

Table 4. Overall performance in differentiating between informative (* positive class) and unin-
formative frames. SILBP combined with Random Forests classifier were used. 

 Pure Noise Motion Artefacts All Uninformative Informative* 

Total frames 404 195 599 5046 

Correctly classified 358 145 503 4673 

Table 5. Associated statistics in differentiating between informative (positive class) and unin-
formative frames. SILBP combined with Random Forests classifier were used. 

Sensitivity Specificity Accuracy F1 Score 

92.6% 84.0% 91.7% 95.2% 

As shown in Table 4 and Table 5, SILBPs combined with Random Forests classifier 
(marginally outperforms LDA and SVM) can provide an accurate (> ͻͳ%) classifica-
tion between informative and uninformative frames. Uninformative frames were iden-
tified as a sequence of binary classifiers, classifying pure-noise vs elastin frames fol-
lowed by a motion artefacts vs normal elastin. The performance is slightly inferior for 
identifying motion artefacts compared to pure noise frames. This is due to the detection 
of motion artefacts being a more challenging and subjective task, which has been illus-
trated by the modest inter-observer agreement in the manual annotations of motion ar-
tefacts recorded by [11]. Future steps include: 

1. the assessment of SILBPs in other, clinically relevant classification tasks, such as 
localising between airways and distal lung, as well as between healthy and patho-
logical lung tissue, and   

2. the efficient implementation, integration and assessment of SILBPs in real-time clas-
sification of OEM frame sequences. 
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5 Conclusions 

Imaging through a fibre bundle generates sparse, irregularly sampled OEM data, recon-
structed to regularly sampled grid images. Deriving texture metrics (such as LBPs and 
GLCMs) from the reconstructed images can have a detrimental effect on any associated 
frame classification performance. Determining texture descriptor parameters from ex-
plicit knowledge on the irregularly sampled data, such as the average inter core dis-
tance, can enhance the OEM frame classification accuracy. Furthermore, a proposed 
adaptation of LBPs utilising information from the irregularly sampled data directly and 
exclusively can achieve equivalent performance in identifying uninformative frames to 
LBPs, while accounting for only ͳʹ.͹% of the original data. Conditional to appropriate 
refinement and testing, the proposed texture descriptor (SILPBs) can become widely 
applicable in on-the-fly classification/parsing of OEM frame sequences. 
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