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Abstract. Optical endomicroscopy (OEM) is a novel real-time imaging technol-
ogy that provides endoscopic images at the microscopic level. Clinicalfd&M
cedures generate large datasets making their post procedural analygstaveub
and laborious task. There has been effort to automatically classify @ f
sequences into relevant classes in aid of a fast and reliable diagnosiexidt-

ing classification approaches adopt established texture metrics, suatabBito
nary Patterns (LBPs) derived from the regularly sampled grid images. However,
due to the nature of image transmission through coherenbfilmdies, raw OEM
data are sparsely and irregularly sampled, post-processed to a regulatdsam
grid image format. This paper adapts Local Binary Patterns, enooly used
image texture descriptor, taking into consideration the sparse, irregular gamplin
imposed by the imaging fibre bundle on OEM images. The perfagnah
Sparse Irregular Local Binary Patterns (SILBP) is assessed in conjunction wit
widely used classifiers, including Support Vector Machines, Random Fanekts
Linear Discriminant Analysis, for the detection of uninformative fraies
noise and motion-artefacts) within pulmonary OEM frame sequences. Unin-
formative frames can comprise a considerable proportion of eetidtaseasing

the resources required to analyse the data and impacting on amatad@uan-
tification analysis. SILBPs achieve comparable performance to theabpBRs

(> 92% overall accuracy), while employing 13% of the associated data.

Keywords: Optical endomicroscopy, texture analysis, irregular sampling, local
binary patterns, frame classification.

1 Introduction

Optical endomicroscopy (OEM) is an emerging imaging tool used both clinarad
pre-clinically in the pulmonary, urological and the gastro-intestinal trabtstechnol-
ogy employs a proximal illumination unit linked to an interface with atflexmulti-

core optical fibre bundle. The miniaturised fibre bundle is passedgh the working
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channel of endoscopes enabling microscopic imagiitgdistal end. Probe-based con-
focal laser endomicroscopy (pCLE)currently the most widely used platform and the
only OEM methodology approved for clinical use. pCLE employsglesitolour prox-
imal laser scanning illumination (most commonly at 488nm). Yet, therglisthora of
flexible, versatile and low-cost OEM architectures currently under development and
evaluation, employing LED illumination sources [1], capable of tiea-imaging at
multiple acquisition wavelengths [2].

In pulmonary OEM, auto-fluorescence (at 488nm) generated through théaaibu
elastin and collagen has enabled the exploration of the distal pulmonaf$]tesctvell
as the assessment of the respiratory bronchioles and alveolar gas exchangidg units [
OEM has been used clinically in the lung for the detection of lung cabcand has
been used to assess the distal lung [6, 7] including the imagiparefichymal lung
diseases [8]. Furthermore, there has been an effort to develop moletarigeted flu-
orescent SmartProbes that can bind and amplify fluorescence in the prdsefiame
mation [9], bacteria [10] and fibrogenesis [4].

Fig. 1. Example pulmonary OEM images coiniag (a) pure noise due to loss of contact with
tissue, (b) low contrast and mostly linear bronchus strands, (cebliadlastin strands, healthy
and pathtogical respectively.

Clinical pulmonary OEM data acquisition tends to generate large imagensesu
that form a long continuous scemendering the process of their manual analysis-lab
rious and highly subjectivén particular, within these OEM sequences there are frames
that image the airways (Fig.d), or the alveoli elastin strands (healthy or pathological),
see Fig. Ic-d. Furthermore, there are frames that contain only noise (Bjgnostly
due to the lack of contact of the fibre with a fluorescent target. Similaelse tire frame
sequences where the spatial movement is very large when comparedeimpbeal
rate of acquisition. This results in motion-artefacts (Fig. 2), expressed as ciith
formed anatomical structures, or spatial discontinuity for temporally adjaeemes.
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Such frames contain little information of value and are thereforeeéfer as “unin-
formative frames”. There have recently been a numbgéstudies attempting to group
OEM images in two or more classes such as differentiating betwieemative and
uninformative frame[11], or normal and abnormal elastin frames [-Frame clas-
sification / parsing can be beneficial to the diagnostic process, redueiagdbciated
human/computational resources, while enabling more targeted and objective image
quantification/interpretation. Yet, all these studies have utilised texture descriptors
based on regularly sampled, grid images. However, in raw OEM im@igeso trans-
mission of the data through a coherent fibre bundle, the sampsipgrise and irregular.

This is a well-known limitation in OEM imaging with a number ofgureed solutions

for the reconstruction of regular, gridded images from the spapgared data [15]

Fig. 2. Example frame sequencef(a-c) motion-artefacts as deformed structufds) motion-
artefacts as spatial discontinuity in temporally adjacent frames, and (ge)nterngements.

This paper makes the following contributions:it(investigates the effect of sparse,
irregular sampling (and subsequent image reconstruction) impysée fibre bundle
structure on the frame classification via standard texture descriptorasiceal Bi-
nary Patterns (LBPs) and Gray Lew@b-occurrence Matrices (GLCMis(ii) it pro-
poses an adaptation of LBPs utilising explicit knowledge of this spaespiliar sam-
pling in an attempt to reduce the required computational resources. Similarhe Mes
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LBP [16], a set of vertices is triangulated to a mesh. However, unlike MeshhBP,
formation solely from the sparse and irregularly distributed verticaajgoyed. These
texture descriptors, along with commonly used classifiers, are emplogiesdiésociate
between informative and uninformative framédsinformative frames can amountdo
substantial proportion (likely> 25%) of a dataset, potentially (i) prolonging the off-
line assessment, and (ii) diluting the results of any post-proceduaglei analysis
There is therefore a need for an automated approach to detect and reciofvarses.

2 M ethodology

The task of disssociating between informative and uninformative frames was formu-
lated as a classification problem on a feature space comprising of texture descriptor
derived from the OEM frame sequences. Three well-established classifiers agre us
(Random Forests, Support Vector Machines and Linear Discriminant Agj)algsni-

larly, commonly used texture descriptors such as LBPs and GLCMs,wittn§parse
Irregular Local Binary Patterns (SILBPs), an adaptation of LBPs fosesgeud irregu-

larly sampled OEM images, were employed.

Video Pre-processing. Prior to any analysis, each video was (i) contrast enhanced en-
suring a common dynamic range across all data, and (ii) cropped, magptam larg-

est square regior360 x 360 pixels) within the circular field of view (FOV) as seen in
Fig. 1. The remaining 4 segments (e@éh of the circular FOV) were not included in
the texture estimations and the subsequent frame classification. This deeisibased

in the assumption that, if the central square region of a frame was ideatfigae-
noise or a motion-artefact, a small structure in any of the 4 excludsecsioms would

not be sufficient to reinstate the frame as an informative frame.

21 TextureDescriptors

Local Binary Patterns (LBPs). LetI(x,y, t) be a greyscale image sequence, with
[1,N],y € [1,M] andt € [1, K] indicating the pixel location (x - column and y - row)
and the frame number respectively. As described in [17], for eachppired frame

I = 10, Y, ) (x y)e[1,n]x[1,m]» @ binary vecto.BP, , of lengthL was constructed by
thresholdingL equally-spaced neighbours located on a circle of ragliasound the
central pixelp, by estimating

LBP(pc) = g s (It(xpi’ypi) — I(%p, ypc)) 2t 1)
Lifv=0

wheres(v) = {0 ifv<0

with I, (x,_, ¥,,.) andl,(x,., y,,) representing the image intensity of the central ixel
and its local neighbouns;, wherei € [0, L — 1], respectively. In other words, a local
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neighborp; of valuelt(xpi,ypi) on a circle of radiug was assigned 0 if smaller than

It(xpc,ypc), and 1 otherwise, making the constructed binary vectors invariantrto mo
otonic image intensity transformations. Uniform binary codes wereeterireducing
the dimensionality of the feature space as well as a means of inmpilegna simple,
rotation invariant descriptor. In particular, uniform LBPs were defined as mpattéth

at most two bit-wise transitions, either from 0 to 1 or 1 to Gfddm codes constituted
more tharb0% of all binary codes in the available OEM dataset. Uniform binary pat
terns were made rotation invariant by representing them using the nunetiements
with value 1 in each associated uniform vector of lergtresulting inL + 1 distinct
values (0 td.). The remaining non-uniform patterns were encoded with the vatue

1. Finally, the encoded values were aggregated in a histog(amof L + 2 bins,
which characterised the current frafpeEach histogram was considered as a point in
the L + 2 dimensional space and passed to the next stage for classification.

Sparse Irregular Local Binary Patterns (SILBPs). Let C = [¢4,cy, ..., cp], Where
¢; = (x;,y;) andj € [1, P], be the core centroids for each individual core within the
imaging fibre bundle (Fig. 3Pelaunay Triangulation was employed to derive a con-
nectivity list DT (C) of the point set containin@ — 2) unique triangles (Fig. 3.bpe-
launay Triangulation offers a number of attractive properties, includicgrfnecting
points in the nearest-neighbour manner, (i) maximising the mmimwgle of all the
angles of the triangles (avoiding sliver triangles), and (iii) enstiniaiga circle circum-
scribing any triangle does not contain any other point in its interior. Theperpes
make Delaunay Triangulation an attractive approach for interpolating aoecssarse,
quasi hexagonal sampling of a multicore fibre bundle, generating an assoegied
larly sampled rectangular grid [15]

For each core within the fibre bundle, théx,y) coordinates associated with the
rth -order neighbours iBT(C) were estimated a8 = [n],n}, ..., n |, a collection
of coordinate vectors”, with k being the number ath -order neighbours af (Fig.
3.b). In theory, the imaging fibre bundles are constructed in a hexlagwuacture.
However, inhomogeneities in the construction result in a varying numlggrbaging
cores. In particular, as illustrated in Figa,4nost cores amongst the fibre bundles used
throughout this study had between 5 ané @rtler neighbours, with 6 neighbours being
the most common occurrence. Similar variations were observed for regrdinorder
neighbours. In order to replicate the vector notatiomtloforder neighbours to each
pixel employed by the LBPs in regular grid images, for each«c@fey. 3.c):

1. The 2D image plane was dividedlis= 8 x r equiangular segments;

2. AvectorN'" = [n'],n'}, ..., n]] of lengthl = 8 X r was created;

3. For each equiangular segment (in anticlockwise direcion)[1, 1], n'y = u(N§),
whereNg contained the cores of" falling within the segmerf andy is the asso-
ciated average value.

In a similar fashion tdBP, , for each core in framel, a binary vectoSI/LBP,, of
lengthl was constructed by thresholding ttie order neighbouring cores around the
central core by estimating
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SILBP(©) = T35 (1 (%up yag) = 16690 2, @
Lifv>0

wheres(v) = {0 ifv<0

with I(x.,y.) andl (xn,ir,yn,ir) representing the image intensity of the central core lo-
cation and its local neighbours M™ respectively. For segments including no cores
1 (xn'ir'yﬂ'i’) = 0.5 (I (xn'?_l'yfl'?_l) +1 (xn'?ﬂ'yn'?ﬂ )) No two consecutive
segments without a core were observed and considering the measumtzel of neigh-
bouring cores (Fig. 4.a) and the core distribution characteristics sitfilime bundle,

such occurrence is highly unlikely. Similarly to LPBs, the encodeddes describing
framel,. were aggregated in histogranit) ofl + 2 bins.

Fig. 3. (a) OEM frame of healthy lung elastin strands. (b) Zoomed-in rediamearest with
individual cores highlighted, as well as a central core (blue) al@thgts15t (red) and 2 (green)
order neighbours estimated from the associated Delaunay Triangulation. (c)tiMesxample
of 15t order neighbours core connectivity and spread, along with tHativesposition in the
equiangular segments usedSh.BPs.

The Gray-Level Co-occurrence Matrix (GLCMs). The Gray-Level Co-occurrence
Matrix [18] G, for framel, = I(x,y, t)xy)e[1,8x[1,m] WaS defined as B x B matrix

1Lif I(x,y,t) =nand [(x + Ax,y + Ay, t) =
0, otherwise

GEY(,6) = Ty T | ®)
where,B was the number of grey-levels within the image (16 hignd{ were inten-
sity levels,x andy were the spatial positions in the imalgeandAx and4y were the
spatial offsets (in number of pixels) utilised to estimate the GL&Mro achieve ro-
tational invariance of the relevant texture measufgsywas estimated as the mean
GLCM for offset pairg(4x, 0), (4x, 4y), (0, 4y), (—4x, Ay)}, corresponding to a sin-
gle pixel offset at direction®f, 45°, 90° and135°). The probability of each co-occur-
ring pair was estimated &'°"™ = G./n, where n was the sum of all elementsay.
Related texture metrics as described in [18] includagtrast, Energy, Homogeneity,
Entropy, Maximum Probability, Mean intensity andintensity Standard Deviation were
derived, defining a 7-dimensional feature spacs.
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Features for motion artefact detection. The direct texture valuesere employed to
distinguish between informative and pure noise frames. On the ottertharframe-
by-frame texture variabilityTexture’ = Texture(t) — Texture(t — 1) was used to
detect motion artefacts, wiffexture € [X,Y, Z] corresponding to one of GLCMs()

LBPs(Y) or SILBPs £) extracted from the data at frame number[1, K].

2.2 Classifiers

Support Vector Machines (SVM). Support Vector Machines (SVMs) performs a bi-
nary classification task by finding an optimal hyperplane in the feapace, maximis-

ing the distance between the decision boundary and nearest tyaanmdrom each
class [19]. Fou,, andv,, representing a single observation and its associated label in
the multi-dimensional feature space of the training set, SVM employs atiroeke! of

the formf (u,,) = u,B + b whereb is the bias, an@ the normal vector to the hyper-
plane, known as the decision boundary. In an attempt to find the basitsggp hyper-
plane, 8 andb that constitute the perpendicular distance between the decision boundary
and its nearest point as high as possible are estimated. To avoid ovettfigtingn-
separable dataset and resulting in poor generalisation performance, a soft nuirgin is
fined by introducing a slack variabfe> 0 and penalty paramet€r The new optimi-
sation problem is therefore formulated as follows

min (C S & + 3 1BI12), such thab, f (un) 2 1= & @

wherem = [1,..,Q], Q being the size of the training set, and the parant&ter0
(called the box constraint) controlling the trade-off between the mardithanslack
variable penalty, which compensabetween the hard margin and soft margin.

Random Forests (RF). Random forests [20] are an ensemble learning method for clas-
sification (and regression) that combines decision tree learning and togedogor-

der to correct for the overfitting to the training set tendency of thmdioapproach.
Each decision tree is formed by creating a split using the best predictiableare-
lected from a random subset of the training set until the leaf node higsvteamples

to split. After training, the classification decision is obtained by takinghdjerity vote

of all the outputs of individual decision trees. In this study, acanidrest implemen-
tation was employed comprising of 200 trees, with a minimum purbleaf node
observations set to 1 (default) aﬂﬂbor(\/a) randomly selected features in each split,
with Q being size of the whole training set.

Linear Discriminant Analysis (LDA). Fisher’s discriminant analysis, commonly re-
ferred to as Linear Discriminant Analysis (LDA) is a simple din@madity reduction
approach (through linear transformation of the feature space) thatimasaioplication

as a linear classifiecapble of separating amongst data of two or more classes [21,
22]. In particular, LDA projects data from the multi-dimensional featureespdo a
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vector space that maximises between-class distance (scatter Sjatuilxlie minimis-

ing within-class distance (scatter matriy) through maximising objective function
J(¥) = (¥TSgy)/(¥TSyy), Wherey is the optimal projection vector. The discri-
minant hyperplane is normal foand the associated decision criterion (location of hy-
perplane) is estimated as a thresholdron> w for some threshold constaat

3 Data Analysis

A total of 9 OEM image sequences (8Hz) of the distal lung were usdidefdraining
and testing of the proposed methodology. All data were obtained asf patarger
database (126 subjects) during routine investigation for indeterminate @uinod-
ules Kk 30mm) at the Columbus Lung Institute, Indiana, USA. Approval for theys
which generated the data studied in this paper, was granted by thenAestiastional
Review Board. All of the data used in this paper were acquired byla sixgert op-
erator using a 488nm CellviZi$ with a 1.4mm lateral diameter and @0um field-
of-view AlveoflexTM fibre, (Mauna Kea Technologies, Paris, France)varé stored

in the proprietary .mkt format. Of the original database, 43 subjectsrejented due
to (i) short duration of sequences 10 frames), (ii) corrupted data (i.e. not readable,
misaligned / out-of-focus fibre), or (iii) lack of distal lung fram@¥.the remaining
videos, 9 were randomly selected as a training and testing set (averagifigro@3
per video) with no other subjective criteria (such as image quality) thigk potentially
bias the proposed algorithn#s.9-fold cross validation was employed, separating data
at video level and consequently preventing potentially correlated frentlesled in
both training and testing sets biasing the classification performance.

Table 1. Sizes (number of frames) of the overall dataset and the thaaoaotated sub-classes.

Total number Informative Sub-sampled (1:9) Noiseframes Maotion artefacts
of frames frames infor mative frames

5645 5046 561 404 195

Prior to any processing, an experienced investigator manualbtatad each indi-
vidual frame in the dataset as normal or pure-noise. Moreover, due toithsubjec-
tive nature of the task, two investigators independently annotated eachuatifvadne
in the dataset as normal or motion-artefact. A frame was assigned the-ambéifact
label if both investigators had annotated it as such. The resulting binartatomms
were used as the gold standard for the subsequent evaluation of treegralgorithm.
Table 1 summarises the relevant sizes (in number of frames) of the kevddtd Due
to the large class imbalance (0: 1 ratio) in the annotated frames, and considering the
discriminative nature of the classifiers employed in this study [28]ir#ining sets
were adjusted by uniform sub-sampling of the informative éswith al: 9 ratio. Data
sub-sampling also reduced any redundancies in the training set due to pbtghtial
correlation between consecutive frames. The effectiveness ofajpesad approach in
detecting uninformative frames was quantitatively assessed by esgrtegtiaccuracy,
sensitivity and specificity against manual detection.
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4 Results and Discussion

Fig. 4.b illustrates the distribution of distances (in number of pixels) beteaeh core
within a fibre bundle and its immediate®(drder) neighbouring cores. The majority of
the cores are spaced 2 to 4 pixels apart, with just under 3 pixels beimgsheom-
monplace occurrence. The inter-core distance appears to have a directretfeet o
performance of LPBs in the disassociation between informative anag@igseeframes.

As shown in Table 2, there is a substantial increase in the classificatiomzeréer
(accuracy) folR = 2 to 4 pixels with best performance achieved for a radius of 3 pix-
els. Similar behavior was observed in the GLCM estimation with optimal classificatio
performance using a combination of the 3 and 4 pixels step. Tdmstsrare indicative

of the potential detrimental effect of extracting texture descriptors $parsely sam-
pled and subsequently reconstructed data such as OEM images. Consgeesiamthy-

ing the texture descriptors’ parameters based on the associated fibre bundle character-
istics can enhance the classification performance.
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Fig. 4. (a) Distribution of the number of thé&' drder neighbouring cores for each core in a fibre
bundle. (b) Distribution of distances (in pixels) between each core arftditder neighbours.

Table 2. Informative Vs Noise frames classification accuracy f8P& of increasing radius.
Random forest classifier employed (best classification performance).

R=1 R=2 R=3 R=4
Accuracy 93.0% 98.2% 98.7% 98.1%

Table 3 enables a comparison, in terms of classification performancea@gcur
across the combinations of different texture metrics and classifiers @esanilbhis
study. For GLCM and LBPs the optimal parameters associated with teebfibdle
were employed. On the other hand, SILBPs used only immedfatedér) neighbour-
ing cores for the derivation of texture information. Employing omligihbouring core
values removed some of the uncertainty introduced by the reconstpiatési(used in
LBPs and GLCMs) within the regular grid image. On the other heorde uncertainty
was introduced to the SILBP texture metric due to potential variations in distance
tween central and neighboring cores (Fig. 4.b). As demonstratediiy 3, all three
texture descriptors perform very similarly in distinguishing betwaérmative and
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uninformative frames. There is a marginal drop in classification accuraoyiatss|
with SILBP when compared to GLGMand LBR. Yet,each360 x 360 pixel region
of interest & 129K pixels) analysed corresponds to just oV/6K cores, accounting
for 12.7% of the original information. Consequently, SILBPs can provideble al-
ternative to commonly used texture metrics such as GLCMs and loBBpglications
were computational resources are scarce. In particular, it is expecteditte @roalu-
able tool for incorporating frame classification functionality in real-timestifavaren
of OEM imaging platforms, where driving the hardware, capturingingtopre-pro-
cessing and displaying data compete for and sometimes drain the avatabiees.

Table 3. Classification accuracy across different texture metrics and classifiposifive class)

Informative* Vs Pure Noise Informative* Vs Motion Blur
GLCM34 LBP: SILBP GLCM34 LBP3 SILBP
RF 98.7%  98.7% 98.2% 95.9% 96.2%  95.9%
LDA 98.5% 98.5% 96.9% 96.1% 96.4%  96.2%
SVM 98.2% 98.4% 97.1% 95.8% 96.1%  96.0%

Table 4. Overall performance in differentiating between informativpdsitive class) and unin-
formative frames. SILBP combined with Random Forests classifier weech

PureNoise Mation Artefacts  All Uninformative Informative*
Total frames 404 195 599 5046
Correctly classified 358 145 503 4673

Table 5. Associated statistics in differentiating between informative (positives)céasd unin-
formative frames. SILBP combined with Random Forests classifier weech

Sensitivity Specificity Accuracy F1 Score
92.6% 84.0% 91.7% 95.2%

As shown in Table 4 and Table 5, SILBPs combined with Random Eatassifier
(marginally outperforms LDA and SVM) can provide an accurat®1%) classifica-
tion between informative and uninformative frames. Uninformatiamés were iden-
tified as a sequence of binary classifiers, classifying pure-noise vs elastiesfifol-
lowed by a motion artefacts vs normal elastin. The performance is wligtatior for
identifying motion artefacts compared to pure noise frames. Tthigiso the detection
of motion artefacts being a more challenging and subjective task, whitledmdlus-
trated by the modest inter-observer agreement in the manual annotatiortgafano
tefacts recorded by [11]. Future steps include:

1.the assessment of SILBPs in other, clinically relevant classification tasks, such as
localising between airways and distal lung, as well as between healthy and patho
logical lung tissue, and

2. the efficient implementation, integration and assessment of SILBEalitime clas-
sification of OEM frame sequences.
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5 Conclusions

Imaging through a fibre bundle generates sparse, irregularly sampledi@&Mecon-
structed to regularly sampled grid images. Deriving texture metrice ésutBPs and
GLCMs) from the reconstructed images can have a detrimental effecy assotiated
frame classification performance. Determining texture descriptor parametergxro
plicit knowledgeon the irregularly sampled data, such as the average inter core dis-
tance, can enhance the OEM frame classification accurFacthermore, a proposed
adaptation of LBPs utilising information from the irregularly sampleta directly and
exclusively can achieve equivalent performance in identifying unirgfovenframes to
LBPs, while accounting for onl}2.7% of the original dataConditional to appropriate
refinement and testing, the proposed texture descriptor (SILPB$)ecame widely
applicable inonthe-fly classification/parsing of OEM frame sequences.
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