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Abstract. Newborns with hypoxic-ischemic encephalopathy (HIE) are at 
high risk of brain injury, with subsequent developmental problems including 
severe neuromotor, cognitive and behavioral impairment. Neural correlates of 
cognitive and behavioral impairment in neonatal HIE, in particular in infants 
who survive without severe neuromotor impairment, are poorly understood. It is 
reasonable to hypothesize that in HIE both structural and functional brain net-
works are altered, and that this might be the neural correlate of impaired cogni-
tive and/or behavioral impairment in HIE.  

Here, an analysis pipeline to study the structural and functional brain net-
works from neonatal MRI in newborns with HIE is presented. The structural 
connectivity is generated from dense whole-brain tractograms derived from dif-
fusion-weighted MR fibre tractography. This investigation of functional con-
nectivity focuses on the emerging resting state networks (RSNs), which are sen-
sitive to injuries from hypoxic-ischemic insults to the newborn brain. In con-
junction with the structural connectivity, alterations to the structuro-functional 
connectivity of the RSNs can be studied. Preliminary results from a proof-of-
concept study in a small cohort of newborns with HIE are promising. The ob-
stacles encountered and improvements to the pipeline are discussed. The 
framework can be further extended for joint analysis with EEG functional-
connectivity.  

Keywords: hypoxic-ischemic encephalopathy, connectivity, diffusion MRI, 
resting-state functional MRI, networks, human brain 
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1 Introduction 

Neonatal hypoxic-ischaemic encephalopathy (HIE) as a consequence of perinatal 
asphyxia is associated with a high risk for brain injury and subsequent neurological 
and cognitive impairment[1]. Early diagnosis and outcome prediction is important to 
facilitate early intervention, enhance management and improve outcomes. Therapeu-
tic hypothermia (TH), a neuroprotective intervention, reduces mortality and severe 
motor symptoms (cerebral palsy, CP) in toddlers with a history of neonatal HIE[2] . 
However, even after TH, cognitive impairments are frequent (up to 60%) in children 
with HIE, even in the absence of severe neuromotor impairment[3]. 

Neonatal Magnetic Resonance Imaging (MRI) is performed routinely after TH, 
with the aim of assessing the severity of brain injury and aiding prediction of neuro-
developmental outcome, However, the neural correlates of cognitive and behavioural 
impairment in neonatal HIE are poorly understood, particularly in the large proportion 
of infants who survive without  CP. Recent animal work[4] suggests that neonatal HI 
disrupts large scale functional pathways between the prefrontal cortex and hippocam-
pus, which are linked to cognition. This occurs even with minor/moderate morpholog-
ical brain changes, and network alterations persist beyond neonatal age[4].  

A few studies have examined injuries on the developing brain networks in humans, 
showing alterations of networks’ structures in prematurity and intrauterine growth 
restriction which correlate with cognitive development in toddlers[5, 6]. The effects 
of HIE on early development of brain networks has only been studied in 6-months old 
infants[7], and showed a trend of declining structural network integration and segre-
gation with increasing neuromotor deficit[7]. However, there is currently no infor-
mation in humans on how structural and/or functional connectivity alterations relate 
to cognitive outcome in the early years following neonatal HIE.  

The aim of the current paper is to describe a framework for studying the structural 
and functional brain networks in newborns with HIE using MRI. As an extension of 
this framework, it also provides means for amalgamation with EEG functional-
connectivity for combined analysis. 

2 Methodological outline 

Over the last few years, significant progress has been made in neuroimaging and 
neurophysiology with regard to characterizing the developing neural networks[8] and 
network alterations in neurodevelopmental disorders[9]. The structural connectome, 
i.e. the anatomical cortico-cortical and cortico-subcortical connections, can be recon-
structed with diffusion-weighted MRI (dMRI) and fibre tractography. Anatomically 
separated brain regions also display so-called functional connectivity – they are co-
activated during task-performance and during rest. Resting-state networks (RSN), 
studied using resting-state functional MRI (rs-fMRI), include spatially distinct net-
works activated in parallel during rest. To robustly characterize typical brain matura-
tion and response to injury, one must consider structural and functional brain connec-
tivity together. The emerging RSNs in the newborn brain are sensitive to injury from 
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HIE, and it is reasonable to hypothesize that alterations to the structural and function-
al connectivity of the RSNs, assessed in the neonatal period, are predictive of future 
cognitive outcome.  

This paper describes a framework for studying the functional and structural con-
nectomes using advanced MRI protocols and evaluation pipelines in the context of, 
but not only limited to, newborns with HIE. MRI of the newborn brain offers several 
challenges. Movement artifacts are common. The small brain size means that the 
relative sizes of the individual brain structures are also small, limiting their effective 
resolution. The yet unmyelinated white matter (WM) and the brain tissue’s overall 
increased water content make the MR signal properties different from the mature 
brain. Therefore, specifically adapted neonatal MRI protocols and processing pipe-
lines are required, and will be described in some detail in the following paragraphs.  

3 Methods Part I: Processing of MRI data 

3.1 Data acquisition 

Neonatal MRI was performed on day 4-11 in newborns with HIE, allowing at least 
one day of re-warming after finishing the 72-hrs therapeutic hypothermia (TH). In-
fants were scanned during natural sleep, using the “feed-and-wrap” technique in 
which the baby is fed prior to imaging. The infant usually falls fast asleep and no 
sedation is required for imaging; this is a routine clinical procedure.  

MRI was performed on a 3 Tesla MR scanner (Siemens Skyra VE11, Siemens AG, 
Erlangen, Germany), at Southampton General Hospital, UK. Participants were 13 
newborns with moderate/severe HIE and undergoing TH at Princess Anne Hospital, 
Southampton, UK. 

The routine clinical MRI protocol for infants with HIE consists of axial T1-
weighted (T1w), proton density, T2-weighted (T2w), 3D-T1w (voxel size 0.8 mm x 
0.8 mm x 0.8 mm), susceptibility weighted imaging (SWI) and diffusion-weighted 
MRI (dMRI), sagittal T2w and coronal T2w. Three sequences that were used for the 
work described in this paper were added to this routine protocol; a 3D-T2w (voxel 
size 0.9 mm x 0.9 mm x 0.9 mm), an rs-fMRI acquisition (voxel size 2.3 mm x 2.3 
mm x 2.3 mm, full-brain coverage, 190 volumes with a TR=2.5 s, with an additional 
field map) and dMRI (voxel size 2.3 mm x 2.3 mm x 2.3 mm, full-brain coverage, 
multi-shell acquisition with 7 b=0, 16 b=400 s/mm2, 58 b=2600 s/mm2, and an addi-
tional 2 “b=0” volumes with reversed phase encode direction).  

Ethics approval for use of anonymized data collected in the clinical context of the 
neurodevelopmental follow-up programme was granted by the University of South-
ampton, UK, Faculty of Medicine Ethics Committee (ID:26356). 

3.2 Processing of structural MRI 

The structural MRI (sMRI), consisting of the 3D-T1w and 3D-T2w images, cap-
tures the anatomical structures in the brain. Processing of sMRI involved four main 

MIUA2018, 025, v3 (final): ’Developing a framework for studying brain networks in neon� . . . 3



4 

steps: brain extraction, image registration, brain tissue segmentation, and anatomical 
parcellation. The newborn brain has high water content and is still, largely, unmyelin-
ated. Consequently, the T1w and T2w images have a different tissue contrast com-
pared to adult images. Since most processing algorithms are developed for adult-like 
tissue contrasts, they require adaptation to neonatal images. Therefore, each of the 
four steps in the processing of sMRI will be explained in some details. 

3.2.1 Brain extraction 

Brain extraction of the neonatal sMRI often proves problematic when using the 
standard approaches developed for adult images, e.g. the FMRIB Software Library 

(FSL) brain extraction algorithm BET[10]. This was also the case with our ac-
quired data. A pragmatic work-around was to use BET on the SWI magnitude images, 
which demonstrated good whole brain delineation, then co-register the SWI images to 
other image spaces (i.e. 3D-T1/T2w, dMRI and rs-fMRI spaces), and map the brain 
mask into these spaces. This approach gave very good results, but requires an SWI 
acquisition. 

3.2.2 Image registration 

Intra-subject registrations of the sMRI, dMRI and rs-fMRI datasets were carried 
out via linear/affine registration using FSL’s FLIRT[11]. For improved registration of 
each participant’s rs-fMRI to the sMRI data, a field map sequence was acquired in the 
research protocol. However, the field map could not, as of yet, be used for the neona-
tal registration pipeline with MIRTK (see below). 

Inter-subject image registration is performed using a common template. However, 
few neonatal templates are publically available. The ALBERTs template (http://brain-
development.org/brain-atlases/neonatal-brain-atlas-albert) was chosen for this study. 
Due to the different signal characteristics of the neonatal brain to the adult brain, adult 
registration algorithms have to be adapted for the neonatal registration or, alternative-
ly, specific neonatal registration algorithms have to be used. This study opted for the 
MIRTK package (https://github.com/MIRTK), which has been extensively used for 
registration and segmentation of neonatal sMRI. 

3.2.3 Brain tissue segmentation 

Tissue segmentation of the neonatal brain is a challenging task because of the on-
going brain development and concurrent changes in MR signal characteristics. Manu-
al segmentation can be performed but requires expertise and is very time-consuming. 
Automatic and/or semi-automatic techniques are preferred. This is an active area of 
research and several algorithms/techniques have been proposed/are being devel-
oped[12]. Commonly, segmentation algorithms primarily use the 3D-T2w images for 
segmentation since they have superior grey matter/white matter (GM/WM) contrast 
compared to the T1w images in the newborn. Multimodal techniques, e.g. combining 
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3D-T2w and 3D-T1w images, are being developed and show promising result but are, 
in general, not publically available[12, 13].  

This project opted for the neonatal segmentation tool DrawEM 
(https://github.com/MIRTK/DrawEM)[14], which is part of MIRTK. DrawEM is an 
intensity-based technique utilizing the 3D-T2w images to automatically segment the 
neonatal brain into 87 regions, classified into GM, WM and cerebro-spinal fluid 
(CSF) and non-brain tissues classes, and corresponding to a parcellation of the brain 
into 50 anatomical regions[15]. It also outputs a tissue type classification, where eve-
ry voxel is classified according to 9 tissue types as: CSF, cortical GM, WM, back-
ground, ventricles, cerebellum, deep GM, brainstem or hippocampi and amygdala. 
The DrawEM algorithm provided satisfactory results in the cohort for segmenting the 
cortical GM, but not the central brain structures. This is expected as unmyelinated 
WM is difficult to automatically segment in the neonate[12] and, consequently, the 
central brain structures (e.g. basal ganglia) do not display enough contrast on the T2w 
images for anatomical separation. However, reliable delineations of these structures 
are important in the fibre tractography. Therefore, the DrawEM segmentations had to 
be manually adjusted/edited. This was performed by an experienced neuroradiologist 
(FL). 

The tissue type classification is used in the fibre tractography as an input to the 
ACT framework[16]. ACT uses the 5 tissue-type (5TT) format, in which the tissue is 
classified 5 tissue type classes: cortical or deep GM, WM, CSF or pathological tissue. 
The DrawEM tissue type classification could easily be mapped into the 5TT format 
using MRtrix command “labelconvert”. 

Illustrations of the DrawEM tissue segmentation and tissue type classification 
along with the manual editing are given in Fig. 1. 

 

 
Fig.  1 Segmentation of the 3D-T2w images with the DrawEM algorithm[14] (a). 

Notice the poor/absent definition of the anterior/posterior limbs of the internal cap-
sule. Classification of the segmentation into 9 tissue types overlaid on a high-
resolution FA-image (b), and the improvement after manual editing, especially of the 
central WM (c). 
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3.3 Processing of diffusion-weighted MRI 

The diffusion-weighted MRI (dMRI) protocol (see above) was optimized for high-
angular resolution diffusion imaging (HARDI), for improved separation of multiple 
white matter fibre populations in every voxel in the neonatal brain. The analysis pipe-
line was specifically developed for quantitative structural connectivity analysis of the 
fibre orientation distributions (FODs), estimated using a constrained spherical decon-
volution (CSD)[17] approach within the software package MRtrix (J-D Tournier, 
Brain Research Institute, Melbourne, Australia, https://github.com/MRtrix3/mrtrix3). 
Changes in the dMRI signal, particularly the intra-cellular component at higher b-
values, are translated into changes in the corresponding FOD amplitude of that fibre 
population. Spherical deconvolution can, thus, provide relevant parametric measures 
reflecting the underlying WM fibre structure[18]. 

Prior to any processing, visual inspection of all the raw dMRI data was carried out 
to detect excessive motion and/or signal dropouts. Thereafter, de-noising of raw 
dMRI data was performed[19], followed by estimation and correction of susceptibility 
and eddy-current induced distortions and motion-correction[20] using the reversed 
phase-encoding dataset. 

For quantitative comparisons of FODs between brain voxels, it is important to ad-
just for slow signal variations from B1-inhomogeneities, to normalize the b=0 (no 
diffusion weighting) signal across subjects and to use a common response function. 
The first step is achieved using the popular N4-algorithm[21]. The normalization was 
done on a subject-specific basis by normalizing the b=0-images to the median of the 
b=0-value in a WM mask, where the mask was taken as the WM component in the 
5TT image. This is not ideal as the WM may be influenced by pathology, some WM 
voxels are affected by partial volume effects from other tissue compartments and, 
presumably, the WM compartment may vary between subjects. An alternative, avail-
able in the latest release of MRtrix, is to normalize using the sum of all compartments 
in the multi-tissue CSD model. This is yet to be implemented in the current pipeline. 

The response function is the dMRI signal expected for a voxel containing a single, 
coherently-oriented WM fibre bundle. Once estimated, the response function is used 
as the kernel in the spherical deconvolution step. This pipeline uses the “tournier” 
algorithm[22] for estimation of the response function in every subject, which are av-
eraged to achieve a cohort-specific average response function. This, in turn, was used 
to estimate the FODs for all voxels in every subject using the high-shell dMRI data 
(i.e. b=2600 s/mm²) with CSD[17]. Estimation of diffusion tensors was also carried 
out using a weighted linear least squares estimation. From the diffusion tensors, par-
ametric maps of fractional anisotropy (FA), as well as mean, axial (AD) and radial 
diffusivities (RD) and a color-coded FA-map were generated. 

3.4 Processing of resting-state functional MRI 

Resting-state functional MRI (rs-fMRI) can be used to detect the emerging resting-
state networks (RSN) of the neonate[23, 24] to study the functional connectivity with-
in and between the RSNs. Here, the aim was to use rs-fMRI to detect the RSNs in the 
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newborn with HIE, and to study RSN functional connectivity and its relation to the 
structural connectivity from dMRI. This study uses an exploratory approach by ana-
lyzing rs-fMRI data with (probabilistic) independent component analysis (ICA), im-
plemented in FSL’s Melodic[25].  

Analysis of rs-fMRI in the newborn requires special methodological considera-
tions[24]. Newborns examined during sleep typically exhibit occasional quirky 
movements which, by the nature of the ICA, may dominate the results. Excessive 
movement, absolute and/or relative, can be detected in the motion correction step of 
the fMRI time-series[11, 24]. Time-frames affected by excessive motion are com-
monly excised from the time-series before further analysis. This was implemented in 
the current study.  

Deep sleep has been shown to change the connectivity strengths within RSNs in 
adults, but no such studies yet exists in newborns [23, 26]. However, studies in infants 
have shown of no large effect on the baseline BOLD signal from sleep, and several 
studies report no significant discrepancies in qualitative or quantitative results be-
tween infants scanned with and without sedation in rs-fMRI studies [23]. Moreover, 
the limited time of the imaging protocol may prevent the infant from falling into deep 
sleep, and minor variations in light sleep should not exert larger effects on the rs-
fMRI analysis [26]. 

4 Methods Part II: Analysis of structural and functional brain 
connectivity 

4.1 Structural connectivity 

Probabilistic whole-brain fibre tractography was performed within the ACT-
framework[16], using the 5TT maps generated from DrawEM tissue segmentation. A 
dense whole-brain tractogram of the order of 10-10  streamlines was generated by 
seeding streamlines within the GM/WM interface from the 5TT map. The current 10 
whole-brain tractograms each took around 10 hrs to compute on a 16-core work-
station. The tractogram was then filtered using the SIFT-method[27]. In SIFT, stream-
lines are iteratively removed from the tractogram until the streamline density within 
every voxel matches the integral of the underlying FOD lobe. This is based on the fact 
that the integral over an FOD lobe is proportional to the volume of the underlying 
dMRI tissue signal, particularly the intra-cellular component at higher b-values. In 
this way the total streamline count connecting any two regions in the tractogram can 
be viewed as a measure of the underlying connectivity of these two areas[27].  

The SIFT-filtered tractograms were used to generate the structural connectome (the 
MRtrix command “tck2connectome”), with nodes as the anatomical brain regions 
given by the DrawEM tissue segmentation and edges as the set of streamlines con-
necting these regions. The structural connectome can be formulated as a connectivity 
matrix and can be analyzed by means of network analysis/graph theory analysis. Cur-
rently, the DrawEM brain segmentation includes 32 cortical cerebral regions. Other 
parcellation schemes, e.g. those including subcortical structures, could be considered, 
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but are currently not implemented within the DrawEM segmentation, mainly due the 
inability of the DrawEM algorithm to delineate the deep GM structures (see above), 
but should be explored. Examples of whole-brain tractograms and a structural connec-
tome are given in Fig. 2.  

4.2 Functional connectivity 

The subject-level independent components (IC) were visually assessed to identify 
maps which were clearly of artifactual origin. These ICs were then regressed out of 
the rs-fMRI time-series. The “cleaned” rs-fMRI time-series were mapped into tem-
plate space, by combining the registration between the fMRI time-series and 3D-T1w, 
and the 3D-T1w to T1-template (see above). An alternative approach is to use arti-
fact-detection algorithms, such as FSL’s FIX[28], but this requires training data which 
was not available in the pilot study. 

The “cleaned” time-series were concatenated in the time domain, and group-level 
ICA (gICA) was performed. The ICs were inspected, and for every IC it was noted 
whether it belonged to a RSN or was artifactual. Dual regression estimations of acti-
vations in each individual, and network analysis was carried out using FSL’s FSLNets 
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNet) to show the interrelation between the 
different RSN. Results showed reliable identification of 11 ICs related to different 
RSNs in the cohort with adequate segregation of different RSNs (Fig. 3). 

 

 
Fig.  2. The SIFT-filtered whole brain tractogram(a) is used together with a parcellation im-

age (b) to generate the corresponding structural connectome(c). In this example the lobo-lobar 
connectome; the spheres depict the nodes (i.e. the cerebral lobes, including the insular cortices 
and the cingulate gyri), the edges depicts connections between nodes and the sphere sizes cor-
responds to the total streamline count (measure of connectivity). 
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4.3 Structural-functional connectivity 

One of the aims was to carry out a joint analysis of the structural and functional 
connectivity within and between the RSNs. This would provide the structural-
functional characteristics of emerging brain networks as quantitative measures to give 
precise information about structural and functional characteristics of the RSNs and 
specific networks of interest. This was done by looking at the structural connectivity 
between the cortical activation sites of the RSNs. The cortical components of the RSN 
activation, estimated from the gICA ICs using dual regression, were extracted using 
the DrawEM cortical segmentation. These then served as cortical targets to retrieve 
the streamlines in the SIFT-filtered whole-brain tractogram connecting these cortical 
areas. The structural connectivity between these activation sites could then be studied 
using the streamline count as a measure of connectivity. The approach for studying 
the structural-functional connectivity of the RSNs is shown in Fig. 4. 
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Fig.  3. The 11 RSNs identified in the cohort are visually assessed and classified (a). Dual 

regression is used to formulate a connectivity network matrix of connection 
strengths/correlations between the RSNs. This is analysed using basic network modelling in 
FSLNets (b), where red/green/blue represents strong/moderate/low connectivity between the 
numbered RSNs in (a). Notice the clustering of correlated RSNs into meaningful functional 
networks (e.g. RSNs 1-6-3-5 which are all related to visual processing), as well as the anti-
correlation of others (b).  

5 Discussion 

This paper outlines a framework for studying the functional and structural connec-
tivity in newborns with HIE using neonatal MRI. Achieving high quality, state-of-the-
art image acquisition and processing for each of the sMRI, dMRI and rs-fMRI data 
sets, has been a great challenge within a clinical neonatal imaging setting. Neverthe-
less, in our pilot study of 13 newborns with HIE we could achieve good image quality 
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in about 80-90 % of cases. Some of the issues that arose and suggested solu-
tions/improvements are suggested below. 

5.1 MRI acquisition 

MRI is challenging in newborns with HIE. In this pilot study, birth related bleeds 
were common, e.g. intra-cranial haemorrhages. These can cause image artifacts or 
hamper the image post-processing, e.g. the co-registration, unless they are masked out 
in the brain extraction. Motion during the scan was also frequent, mainly due to the 
baby waking up, and can be partly compensated for in the post-processing.   

The imaging protocol can be further optimized, e.g. parameter optimization to im-
prove GM/WM contrast in the sMRI to facilitate segmentation. If multiband acquisi-
tion were available on the MR scanner it should be used as this will reduce scan times 
substantially or increase efficiency, e.g. increase the number of time-points within the 
rs-fMRI acquisition by reducing the TR, and thus the time resolution.  

5.2 Structural MRI 

The segmentation of the sMRI can be improved. The subcortical parcellation with 
the current DrawEM algorithm is not accurate, mainly in areas of unmyelinated WM. 
This is important for fibre tractography, and the deep GM/WM structures had to be 
manually edited. Alternative registration and segmentations algorithms could be ex-
plored, e.g. using combined T1w and T2w contrasts [12]. The cortical GM showed 
occasional holes and could be remedied by a hole-filling algorithm. Finally, the ana-
tomical parcellation map provided in DrawEM is limited to 50 anatomical brain re-
gions and is not equally detailed across the brain (e.g. each temporal lobe contains 12 
regions compared to one single region for the whole frontal lobe) [15]. More detailed 
parcellation schemes would be preferred[29]. As stated before, segmentation of the 
neonatal brain is challenging for various reasons [12]. However, there is a general 
need for more customized software and algorithms specifically targeting these issues, 
as most standard methods are only being tested in much older populations.  

5.3 Diffusion MRI 

The newborn brain is wet causing the dMRI signal to decay quickly, even at mod-
erate b-values. This causes problems with the FOD estimation, especially in the deep 
periventricular frontal and parietal WM. As the SNR in dMRI signal decreases, the 
CSD estimation becomes noisy, which compromises the fibre tractography. Lowering 
the tracking cut-off values (FOD amplitude cut-off, down to 0.05 from 0.1) can ame-
liorate the problem but tractograms become noisier. Alternative response function 
estimators have been tested, e.g. the msmt_5tt framework[30]. However, in short, 
there is no simple answer to this and the current dMRI protocol is considered to give 
the best results.   
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5.4 Structuro-functional analysis 

The structuro-functional analysis needs to be developed further. Currently, the 
structural connectivity can be studied for a single RSN (Fig. 4) and as the structural 
connectivity between the cortical activation sites for the RSN. However, HIE causes 
global injury affecting several RSNs, and their interactions. Therefore, a joint struc-
ture-functional analysis including all RSNs is desirable. The reconstruction of the 
structural connectome (using MRtrix command “tck2connectome”) requires a parcel-
lation input with non-overlapping regions. The cortical activation maps for all RSN 
do overlap (clearly seen in Fig. 3). The RSN activation maps could be thresholded to 
avoid anatomical overlap. An alternative would be to allow for activation overlap. 
This could be neuroanatomically reasonable as the limited dMRI resolution (voxel 
size 2 mm3) cannot, even using HARDI, resolve distinct fiber populations along the 
“same” direction. For example, in the sub/juxtacortical WM, tracts “belonging” to 
separate RSNs would share FODs as they are reaching common cortical endpoints. 
However, along the majority of their paths they do not share FODs. Extracting the 
sets of streamlines from the SIFT-filtered whole-brain tractogram connecting the 
cortical activation maps of each RSN, and then formulating a common analysis would 
be a sensible approach, but the exact details of this would have to be considered fur-
ther.  

 
Fig.  4 Subject-specific spatial maps of the RSNs (a) are mapped on the cortical surface (b) 

and together with the structural connectome, the structural connectivity within specific RSN 
can be studied (c). Here is an example of the interhemispheric connections within the primary 
visual RSN (IC 1). 

5.5 Future directions  

As suggested, several improvements can be made to the analysis pipeline. Howev-
er, we have shown that is possible to study the structural and functional brain net-
works even in our small group of newborns with HIE. The small sample size of the 
pilot study limits association studies; further work on large samples is warranted. 
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One appealing future implementation would be to amalgate/extend the framework 
to a joint analysis with the functional connectivity derived from EEG. The structural 
and functional connectivity data can be used to improve the spatio-temporal charac-
terization of the EEG-derived functional connectivity, e.g. by discrimination of direct 
and indirect connection. Moreover, for a more realistic coupling with the EEG source 
mapping, non-anatomically based parcellations can be considered [31]. 

Ultimately, our work aims at linking brain network metrics, metrics from EEG-
derived connectivity, and clinical outcome data, which will be a promising new ap-
proach to improve early prediction of neurodevelopmental outcome and also early 
identification of those who will benefit from early intervention. 
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