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Abstract. Newborns with hypoxic-ischemic encephalopathy (HIE) are at
high risk of brain injury, with subsequent developmental problems imgud
severe neuromotor, cognitive and behavioral impairment. Neuralai@s of
cognitive and behavioral impairment in neonatal HIE, in particular femta
who survive without severe neuromotor impairment, are poorly undekrdtds
reasonable to hypothesize that in HIE both structural and functional latain n
works are altered, and that this might be the neural correlate afradpcogi
tive and/or behavioral impairment in HIE.

Here, an analysis pipeline to study the structural and functional begain
works from neonatal MRI in newborns with HIE is presented. The structural
connectivity is generated from dense whole-brain tractograms derovedlif-
fusion-weighted MR fibre tractograph¥his investigation of functional ao
nectivity focugson the emerging resting state networks (RSNs), which are se
sitive to injuries from hypoxic-ischemic insults to the newborn brain.om c
junction with the structural connectivity, alterations to the structunational
connectivity of the RSNs can be studied. Preliminary results frgpmoaf-of-
concept study ira small cohort of newborns with HIE are promising. The o
stacles encountered and improvements to the pipeline are discT$sed
framework can be further extended for joint analysis with EEG tifumeal-
connectivity.

Keywords: hypoxic-ischemic encephalopatlepnnectivity diffusion MRI,
resting-state functional MRI, networks, human brain
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1 I ntroduction

Neonatal hypoxic-ischaemic encephalopathy (HIE) as a consequence of perinatal
asphyxia is associated with a high risk for brain injury and suiesgeqeurological
and cognitive impairment[1]. Early diagnosis and outcome predictiongsrtant to
facilitate early intervention, enhance management and improve outcoheap@-
tic hypothermia (TH), a neuroprotective intervention, reduces mortality ewetes
motor symptoms (cerebral palsy, CP) in toddlers with a histoneohatal HIE[2] .
However, even after TH, cognitive impairments are frequent (uP%e) & children
with HIE, even in the absence of severe neuromotor impairment[3].

Neonatal Magnetic Resonance Imaging (MRI) is performed routinely afer
with the aim of assessing the severity of brain injury adéhgiprediction of neur-
developmental outcome, However, the neural correlates of cognitive and hehhvio
impairmentin neonatal HIE are poorly understood, particularly in the large ptiopo
of infants who survive without CP. Recent animal worlgdygests that neonatal HI
disrupts large scale functional pathways between the prefrontal eowexippocen-
pus, which are linked to cognition. This occurs even withomimoderate morphotp
ical brain changes, and network alterations persist beyond neonatal age[4]

A few studies have examined injuries the developing brain networks in humans
showing alteration®f networks’ structures in prematurity and intrauterine growth
restriction which correlate with cognitive development in toddlers[5T6¢ effects
of HIE on early developmertf brain networks has only been studied-months old
infants[7], and showed a trend of declining structural network integratiol seges-
gation with increasing neuromotor deficit{ Hlowever, thereas currently no infor-
mationin humans on how structural and/or functional connectivity alteratieiase
to cognitive outcomén the early years following neonatal HIE.

The aim of the current paper is to describe a framework for stydlye structural
and functional brain networks in newborns with HIE using MRI. A®xension of
this framework, it also provides means for amalgamation wittG Binctioral-
connectivity for combined analysis.

2 Methodological outline

Over the last few years, significant progress has been madernimaging and
neurophysiology with regard to characterizing the developing neusabries[8] and
network alterations in neurodevelopmental disorders[9]. The staliatannectome,
i.e. the anatomical cortico-cortical and cortico-subcortical connections, can Ipe reco
structed with diffusion-weighted MRI (dMRI) and fibre tractography. Anataity
separated brain regions also display so-called functional connectitfityy are co-
activated during task-performance and during rest. Resting-stat®rket(RSN),
studied using resting-state functional M@&$-fMRI), include spatially distinct rte
works activated in parallel during re3to robustly characterize typical brain matur
tion and response to injury, one must consider structural and fundti@alconne-
tivity together. The emerging RSNs in the newborn brain aretisen® injury from
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HIE, and it is reasonable to hypothesize that alterations to the struardr&linctio-
al connectivity of the RSNs, assessed in the neonatal period, are predfidtivere
cognitive outcome.

This paper describes a framework for studying the functional aadtwal co-
nectomes using advanced MRI protocols and evaluation pipelines oomitext of,
but not only limited to, newborns with HIE. MRI of the newbbmain offers several
challenges. Movement artifacts are common. The small brain size means that the
relative sizes of the individual brain structures are also small, limiting efettive
resolution. The yet unmyelinated white matter (WA}l the brain tissue’s overall
increased water content make the MR signal properties different from aheem
brain. Therefore, specifically adapted neonatal MRI protocols and procespaig
lines are required, and will be described in some detail in the followiagzahs.

3 Methods Part |: Processing of MRI data

3.1 Dataacquisition

Neonatal MRI was performed on day 4-11 in newborns with HIEwailp at least
one day of re-warming after finishing the 72-hrs therapeutpotiermia (TH). th-
fants were scanned during natural sleep, using“fbel-andwrap” technique in
which the baby is fed prior to imaging. The infant usually fédist asleep and no
sedation is required for imaging; this is a routine clinical procedure

MRI was performed on a 3 Tesla MR scanner (Siemens Skyra VE11, Sia@ens
Erlangen, Germany), at Southampton General Hospital, UK. Participantsl®ere
newborns with moderate/severe HIE and undergd@idgat Princess Anne Hospital
Southampton, UK.

The routine clinical MRI protocol for infants with HIE consists of axfdl-
weighted (T1wj) proton density, T2-weighted (T2w), 3D-T1w (voxel size 0.8 mam
0.8 mm x 0.8 mm), susceptibility weighted imaging (SWI) andudibn-weighted
MRI (dMRI), sagittal T2w and coronal T2wWhree sequences that were used for the
work described in this paper were added to this routine prota®&D-T2w (voxel
size 0.9 mm x 0.9 mm x 0.9 mm), axfMRI acquisition (voxel size 2.3 mm x 2.3
mm x 2.3 mm full-brain coverage, 190 volumes with a TR=2,5ith an additional
field map) and dMRI (voxel size 2.3 mm x 2.3 mm x 2.3 ,nfuli-brain coverage,
multi-shell acquisition witt7 b=0, 16 b=400 s/mm58 b=2600 s/mfy and an adé
tional 2 “b=0" volumes with reversed phase encode direction).

Ethics approval for use of anonymized data collected in the clinical contthe of
neurodevelopmental follow-up programme was granted by theetkilly of Sou-
ampton, UK, Faculty of Medicine Ethics Committee (ID:26356).

3.2  Processing of structural MRI

The structural MRI (sMRI), consisting of the 3D-T1w and 3D-T2wages, cp-
tures the anatomical structures in the brain. Processing of sM8lvéa four main
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steps: brain extraction, image registration, brain tissue segmentatibapatomical
parcellation. The newborn brain has high water content and is still,atgehyelin-
ated. Consequently, the Tlw and T2w images have a differene tesmtrastcom-
pared to adult images. Since most processing algorithms are dsvdébwpadult-like
tissue contrast they require adaption to neonatal images. Therefore, each of the
four steps in the processing of sSMRI will be explained in some details.

321 Brain extraction

Brain extraction of the neonatal sSMRI often proves problematic wiérg uhe
standard approaekdeveloped for adult images, e.g. the FMRIB Software Library

(FSL) brain extraction algorithm BHEIO]. This was also the case with owr-a
quired dataA pragmatic work-around was to use BET on the SWI magnitudges)
which demonstrated good whole brain delineation, tteregister the SWI images to
other image spaces (i.e. 3D-T1/T2w, dMRI and rs-fMRI spaces), and mdpaim
mask into these spaces. This approach gave very good resultegbines an SWI
acquisition.

322 Imageregistration

Intra-subject registrations of the sMRI, dMRI arsfMRI datasets were carried
out via linear/affine registration usii§L’s FLIRT[11]. For improved registration of
each participant’s rs-fMRI to the sSMRI data, a field map sequence was acquired in the
research protocol. However, the field map could not, as of yet, be usix foeom-
tal registration pipeline with MIRTK (see below).

Inter-subject image registration is performed using a common templawesver,
few neonatal templates are publically available. The ALBERTSs template (http://brain-
development.org/brain-ades/neonatal-brain-atlas-albert) was chosen for this study.
Due to the different signal characteristics of the neonatal brain tatiiebrain, adult
registration algorithms have to be adapted for the neonatal registrataiteanative-
ly, specific neonatal registration algorithms have to be used. Thig spied for the
MIRTK package (https://github.com/MIRTK), which has been extensiusbd for
registration and segmentation of neonatal sMRI.

323 Brain tissue segmentation

Tissue segmentation of the neonatal brain is a challenging tasksbeufathe a-
going brain development and concurrent changes in MR signal chaticieMarnu-
al segmentation can be performed but requires expertise and is vegotisiwening
Automatic and/or semi-automatic techniques are preferred. This is an ae@vefar
research and several algorithms/techniques have been proposed/are being deve
oped[12]. Commonly, segmentation algorithms primarily use Bvd 3w images for
segmentation since they have superior grey matter/white matter (GMAt/M)ast
compared to the T1w images in the newborn. Multimodal technigugsgcombining
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3D-T2w and 3D-T1w imagesre being developed and show promising result but are,
in general, not publically available[12, 13].

This project opted for the neonatal segmentation tool DrawEM
(https://github.com/MIRTK/DrawEM)[14], which is part of MIRTK. DrawEM an
intensity-based technique utilizing the 3D-T2w images to automaticalimesggthe
neonatal brain into 87 regionslassified intoGM, WM and cerebro-spinal fluid
(CSF) and non-brain tissues classe® corresponding to a parcéitm of the brain
into 50 anatomical regions[15]. It also outputs a tissue type clasisificahere eg-
ry voxel is classified according to 9 tissue typssCSF, cortical GM, WM, bdc
ground, ventricles, cerebellum, deep GM, brainstem or hippocamparyddala.
The DrawEM algorithm provided satisfactory resuttshe cohort for segmenting the
cortical GM, but not the central brain structures. This is expectetragelinated
WM is difficult to automatically segment in the neonate[12] and, comsety the
central brain structures (e.g. basal ganglia) do not display enoughstasrirthe T2w
images for anatomical separation. However, reliable delineations of these eguctur
are important in the fibre tractography. Therefore, the DrawEM setgtrars had to
be manually adjusted/edited. This was performed by an experiencextatioiogist
(FL).

The tissue type classification is used in the fibre tractography agantmthe
ACT framework[16]. ACT uses the 5 tissue-type (5TT) fornmatyhich the tissue is
classified 5 tissue type classes: cortical or deep GM, WM, CSF or pathologicel tissu
The DrawEM tissue type classification could easily be mapped into thefdimat
using MRtrix commandlabelconvert.

lllustrations of the DrawEM tissue segmentation and tissue type filagen
along with the manual editing are given in Fig.
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Fig. 1 Segmentation of the 3D-T2w images with the DrawEM algorithm({a}]
Notice the poor/absent definition of the anterior/posterior limbs of teenial ca-
sule. Classification of the segmentation into 9 tissue types overlaid ogha hi
resolution FA-image (b), and the improvement after manual ed@spmgcially of the
central WM (c).
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3.3  Processing of diffusion-weighted MRI

The diffusion-weighted MRI (dMRI) protocol (see above) was optimizedhifgh-
angular resolution diffusion imaging (HARDI), for improved aegion of multiple
white matter fibre populations in every voxel in the neonatal brain. The enpips-
line was specifically developed for quantitative structural connectivitysisabf the
fibre orientation distributions (FODs), estimated using a constrained sploeraat
volution (CSD)[17] approach within the software package MRtrix (J-Dirfier,
Brain Research Institute, Melbourne, Australia, https://github.com/MBRinirtrix3).
Changes in the dMRI signal, particularly the intra-cellular component aemhigr
values, are translated into changes in the corresponding FOD amplitude dfrthat f
population. Spherical deconvolutiaan thus, provide relevant parametric measures
reflecting the underlying WM fibre structure[18].

Prior to any processing, visual inspection of all the raw difi& was carried out
to detect excessive motion and/or signal dropouts. Thereafter, degnoiSiraw
dMRI data was performed[19], followed by estimation and correctionsueptibility
and eddy-current induced distortions and motion-corrg@fjnusing the reversed
phase-encoding dataset.

For quantitative comparisons of FODs between brain voxels,ntpsrtant to d-
just for slow signal variations from Bl-inhomogeneities, tonradize theb=0 (no
diffusion weighting) signal across subjects and to use a conmesponse function
The first step is achieved using the popMNdralgorithm[21]. The normalization was
done ona subject-specific basis by normalizing the0-images to the median of the
b=0-value in a WM mask, where the mask was taken as the WM compioridret
5TT image. This is not ideal as the WM may be influenced by pagfipsome WM
voxels are affected by partial volume effects from other tissue compustraad,
presumably, the WM compartment may vary between subjantalternative, avai
able in the latest release of MRtrix, is to normalize using the sum ofrafiartments
in the multi-tissue CSD model. This is yet to be implemented in therdysipeline.

The response function is the dMRI signal expected for a voxel containingl@, s
coherently-oriented WM fibre bundle. Once estimated, the response fuisctised
as the kernel in the spherical deconvolution .stéps pipeline uses th&ournier”
algorithm([22] for estimation of the response function in evebjext, which are\a
eraged to achieve a cohort-specific average response function. This), iwas used
to estimate the FODs for all voxels in every subject using the high-s¥&I data
(i.e. b=2600 s/mm?) with CSD[17]. Estimation of diffusiongders was also carried
out using a weighted linear least squares estimation. From the diffusionstepes-
ametric maps of fractional anisotropy (FA), as well as mean, axial (ADYahdl
diffusivities (RD) and a color-coded FA-map were generated.

34  Processing of resting-state functional MRI

Resting-state functional MRI (rs-fMRI) can be used to detect the ememgitigg-
state networks (RSN) of the neonate[23, 24] to study the functiona¢ctivity with-
in and between the RSNs. Here, the aim was to use rs-fMRI to det&$MN=in the
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newborn with HIE, and to study RSN functional connectivity andeétation to the
structural connectivity from dMRI. This study uses an exploratopyageh byana-
lyzing rs-fMRI data with (probabilistic) independent component analysis (IQ#A), i
plemented in FSL’s Melodic[25].

Analysis of rs-fMRI in the newborn requires special methodologicakidea-
tions[24]. Newborns examined during sleep typically exhibit occasionaky
movements which, by the nature of the ICA, may dominate thdtse&ixcessive
movement, absolute and/or relative, can be detected in the motion corsteponf
the fMRI time-series[11, 24]. Time-frames affected by excessiggom are con-
monly excised from the time-series before further analysis. Thsimplemented in
the current study.

Deep sleep has been shown to change the connectivity strengths withinrRSNs
adults, but no such studies yet exists in newborns [23H8}ever, studies in infants
have shown of no large effect on the baseline BOLD signal from sleeseaearal
studies report no significant discrepancies in qualitative or quantitative résults
tween infants scanned with and without sedation in rs-fM&liss [23] Moreover,
the limited time of the imaging protocol may prevent the infasnffalling into deep
sleep, and minor variations in light sleep should not exert larger effectiseors-
fMRI analysis [26].

4 Methods Part |1: Analysisof structural and functional brain
connectivity

4.1  Structural connectivity

Probabilistic whole-brain fibre tractography was performed within AGET-
framework[L6], using the 5TT maps generated from DrawEM tissue segmentation. A
dense whole-brain tractogram of the order of-10° streamlines was generated by
seeding streamlines within the GM/WM interface from the 5TT map.cTirent 18
whole-brain tractograms each took around 10 hrs to compute Ificare wok-
station. The tractogramas then filtered using the SIFT-method[27]. In SIFT, strea
lines are iteratively removed from the tractogram until the streamlingtgevithin
every voxel matches the integral of the underlying FOD lobe. Thiased on the fact
that the integral over an FOD lobe is proportional to the volume of tterlying
dMRI tissue signal, particularly the intra-cellular component at highealies. In
this way the total streamline count connecting any two regionitrdlstogram can
be viewed as a measure of the underlying connectivity of thesareas[27].

The SIFT-filtered tractograms were used to generate the structural connectome (the
MRtrix command “tck2connectome”), with nodes as the anatomical brain regions
given by the DrawEM tissue segmentation and edges as the set oflisrsarm-
necting these regions. The structural connectome can be formulated a®etiviiynn
matrix and can be analyzed by means of network analysis/tgrapty analysisCur-
rently, the DrawEM brain segmentation includes 32 cortical cerebral regions. Other
parcellation schemes, e.g. those including subcortical structures, couldsideced,
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but are currently not implemented within the DrawEM segmentatiamly due the
inability of the DrawEM algorithm to delineate the deep GM structuresalseee),
but should be explored. Examples of whole-brain tractograms angctusal conne-

tome are given in Fi@.

4.2  Functional connectivity

The subject-level independent components (IC) were visually assessééentify
maps which were clearly of artifactual origin. These ICs were thgressed out of
the rs-fMRI time-series. Theécleaned” rs-fMRI time-series were mapped intonte
plate space, by combining the registration between the fMRI time-seri&Dandw,
and the 3D-T1w to T1-template (see above). An alternative approachuse tarit
fact-detection algorithms, such as FSL’s FIX[28] but this requires training data which
was not available in the pilot study.

The “cleaned” time-series were concatenated in the time domain, and group-level
ICA (gICA) was performed. The ICs were inspected, and feryelC it was noted
whether it belonged to a RSN or was artifactual. Dual regressionagistns ofact-
vations in each individual, and network analysis eaged out usingFSL’s FSLNets
(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNet) to show the interrelatibetween the
different RSN. Results shaa reliable identification of 11 ICs related to different
RSNs in the cohort with adequate segregation of different RSNs3jFig.

SIFT-filtered LoboJebEie t
(@)  whole-brain tractogram (€) LRPI0 i: cneglons
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Fig. 2. The SIFT-filtered whole brain tractogram(a) is used together with a diwelim-
age (b) to generate the corresponding structural connectome(c). Imatiple the lobo-lobar
connectome; the spheres depict the nodes (i.e. the cerebral lohetinmthe insular cortices
and the cingulate gyri), the edges depicts connections betwees anudi¢he sphere sizesr-
responds to the total streamline count (measure of connectivity).
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4.3  Structural-functional connectivity

One of the aims was to carry out a joint analysis of the stalcamd functional
connectivity within and between the RSNBhis would provide the structural-
functional characteristiosf emerging brain networkas quantitative measures to give
precise information about structural and functional characteristicseoRENs and
specific networks of interest. Thigas done by looking at the structural connectivity
between the cortical activation sites of the RSNs. The cortical comporfiei¢sFRSN
activation, estimated from the gICA ICs using dual regressiene extracted using
the DrawEM cortical segmentatiofihese then served as cortical targets to retrieve
the streamlines in the SIFT-filtered whole-brain tractogram connedtexg tcortical
areas. The structural connectivity between these activation sites coulietisardied
using the streamline count as a measure of connectivity. Theaappfar studying
the structural-functional connectivity of the RSNs is shown in Fig. 4



10

MIUA2018, 025, v3 (final): 'Developing a framework for studying brain networks in neon. ..

10

RSNs functional connectivity

84000060008

84060080000

n

Primary Visual 8. Spylvian fissura-Thalamo
Motor Brainstem

Left lateralised-Visual 9. Right lateralised-Middle
Leftlateralised-Insula-Temporal Cingular-Latero-Frontal
Frontal Executiv 10. Middle Post Cingular-
Right lateralised_Visual Precunues

Right lateralised Temporal 11. Orbito-Anterio Frontal

=5

Fig. 3. Thell RSNs identified in the cohort are visually assessed and classified @). Du
regression is used to formulate a connectivity network matrix ofnextion
strengths/correlations between the RSNs. This is analysed using basic neadzlkng in
FSLNets (b), where red/green/blue represents strong/moderate/low catyndeiween the
numbered RSNs in (a). Notice the clustering of correlated RSNs intoimg&drfunctional
networks (e.g. RSNs 1-6-3-5 which are all related to visual processisgyellasthe anti-
correlation of others (b)

5 Discussion

This paper outlines a framework for studying the functional &mdtsiral conne-
tivity in newborns with HIE using neonatal MRAchieving high quality, statef-the-
art image acquisition and processing for each of the sMRI, dMRI afdREdata
sets has been a great challenge within a clinical neonatal imaging setting. Neverth
less, in our pilot study of 13 newborns with HIE we could achigood image quality
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in about 80-90 % of cases. Some of the issues that arose andstedggal-
tions/improvements are suggested below.

51 MRI acquisition

MRI is challenging in newborns with HIE. this pilot study, birth related bleeds
were common, e.g. intra-cranial haemorrhages. These can causeairtifzgts or
hamper the image post-processing, e.gctheegistration, unless they are masked out
in the brain extraction. Motion during the scan was also frequent, ndilyto the
baby wakingup, and can be partly compensated for in the post-processing.

The imaging protocol can be further optimized, e.g. parameter optioniza im-
prove GM/WM contrast in the sMRI to facilitate segmentation. If multiband aequis
tion were available on the MR scanner it should be used as this will rechitéimes
substantially or increase efficiency, e.g. increase the number eptimes within the
rs-fMRI acquisition by reducing the TR, and thus the time resolution

5.2  Structural MRI

The segmentation of the sMRI can be improved. The subcortical parcellation with
the current DrawEM algorithm is not accurate, mainly in areasofyelinated WM.
This is important for fibre tractography, and the d&¥/WM structures had to be
manually edited. Alternative registration and segmentations algorithms loewdd
plored, e.g. using combined T1w and T2w contrasts. [IB¢ cortical GM showed
occasional holes and could be remedied by a hole-filling algorithm. Finadanh-
tomical parcellation map provided in DrawEM is limited to 50 anatomical beain r
gions and is not equally detailed across the brain (e.g. each tdrgh@ contains 12
regions compared to one single region for the whole frontal lol5)More detailed
parcellation schemes would be preferred[29]. As stated before, sedgimerof the
neonatal brain is challenging for various reasons [12]. Howeveg thea general
need for more customized software and algorithms specifically taggétse issues,
as most standard methods are only being tested in much older populations

5.3 Diffuson MRI

The newborn brain is wet causing the dMRI signal to decay gqulieken at mad-
erate b-valuesThis causes problems with the FOD estimation, especially in the deep
periventricular frontal and parietal WM. As the SNR in dMRI signal decsgdke
CSD estimation becomes noisy, which compromises the fibre tractogtaphgring
the tracking cut-off values (FOD amplitude cut-off, down to Gt 0.1) can am-
liorate the problem but tractograms become noisier. Alternative respomstoifu
estimators have been tested, e.g. the msmt_5tt framework[30]. Hovieahort,
there is no simple answer to this and the current dMRI prots@oinsidered to give
the best results.

11
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54  Structuro-functional analysis

The structuro-functional analysis needs to be developed furthererily, the
structural connectivity can be studied for a single RSN (Fig. 4) anteastructural
connectivity between the cortical activation sites for the RSN. However, &llges
global injury affecting several RSNs, and their interactions. Theredoja@int stric-
ture-functional analysis including all RSNs is desirable. The reconstructitime o
structural connectome (usiddRtrix command “tck2connectome™) requires a parte
lation input with non-overlapping regions. The cortical activation mapslfdRSN
do overlap (clearly seen in Fig). The RSN activation maps could be thresholded to
avoid anatomical overlap. An alternative would be to allow for activation overlap
This could be neuroanatomically reasonable as the limited dMRI resolutael (v
size 2 mm) cannot, even using HARDI, resolve distinct fiber populations along the
“same” direction. For example, in the sub/juxtacortical Witacts “belonging” to
separate RSNs would share FODs as they are reaching common corticahtsndp
However, along the majority of their paths they do not share FODrdiRg the
sets of streamlines from the SIFT-filtered whole-brain tractogram congettta
cortical activation maps of each RSN, and then formulating a common ianabydd
be a sensible approach, but the exact detailsi@fmbuld have to be consideréakr-
ther.

Structuro-functional connectivity of the RSNs

®) (©)

Structuro-functional
connectome

Cortical
mapping

1.
\
-,

Cortical

) 3 parcellation $0 04
s W,

Fig. 4 Subject-specific spatial maps of the RSNs (a) are mapped aortizal surface (b)
and together with the structural connectome, the structural conneatitfityy specific RSN
can be studied (c). Here is an example of the interhemispheric connedtioinsthe primary
visual RSN (IC 1).

5.5 Futuredirections

As suggested, several improvements can be made to the analysis pipelee: Ho
er, we have shown that is possible to study the structural amtidoal brain ne
works even in our small group of newborns with HIE. Eneall sample size of the
pilot study limits association studies; further work on large samples is wedran
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One appealing future implementation would be to amalgate/extend thewak
to a joint analysis with the functional connectivity derived from EERe S$tructural
and functional connectivity data can be used to improve the spatiof@nchara-
terization of the EEG-derived functional connectivity, e.g. by discriminatifodirect
and indirect connection. Moreover, for a more realistic coupling with ti& &firce
mapping, non-anatomically based parcellations can be considered [31].

Ultimately, our work aims at linking brain network metrics, metricarf EEG-
derived connectivity, and clinical outcome data, which will be a promisévg -
proach to improve early prediction of neurodevelopmental outcomeaso early
identification of those who will benefit from early intervention.
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