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Abstract. The segmentation of retinal pathologies is the primitive and essential
step in the development of automated diagnostic system for various systemic,
cardiovascular, and ophthalmic diseases. The existing oft#tte-art machine
learning based retinal pathologic segmentation techniques mainly aim &t delin
ating pathology of one kind only. In this context, we have gsed a novel
endto-end technique for simultaneous segmentation of multiple retinal lpatho
ogies (i.e., exudates, hemorrhages, and cattool- spots) using encoder-
decoder based fully convolutional neural network architecturaetder, the
task of retinal pathology extraction has been modeled as a sersagtnerd-

tion framework which enables us to obtain pixel-level class labels. fidie p
posed algorithm has been evaluated on publically available Mextidaset

and achieved statgf-the-art mean accuracies of 99.24% (exudates), 97.86%
(hemorrhages), and 88.65% (cotton-wool spots). The developedaahpmay

aid in further optimization of pathology quantification moduléhef QUARTZ
software which has been developed earlier by our research group.
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Introduction

Human retina is a non-invasive window to human circulatory system; ohereii-
tomated analysis of human retina has potential to reveal important information ab
ocular as well as the systemic diseases such as Age-related Macular Degeneration
(AMD) and GlaucomgaDiabetic Retinopathy (DR), Diabetic Macular edema, Hype
tensive retinopathy and multiple sclerosis [1]. A cl@avivo view of the retina and
vascular flow could help in the process of important structuralfamctional infa-

mation extraction from retina thereby assisting the clinicians in tiruetl accurate
diagnosis. The advancements in image acquisition modalities durinaghd 60

years allow non-invasive imaging of retina thus leading to efficient retindiarks
extraction, pathology detection and disease classification.
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DR is a chronic progressive sight-threatening disease. It contribude8%oof the
37 million cases of blindness throughout the world [2]. Duhéolack of resources,
50% of the patients miss their ophthalmic examination sessions l¢adingversible
damage to visual acuity. Timely treatment of DR can reduce the threigtial acuity
by 60% [3] therefore diagnosis of DR at the premature stage ismpoytant. Mami-
al segmentation techniques adopted by clinicians are monotonous, tiserniog,
inconvenient, labor intensive, observer driven, and require proficien{4killhereas
computer-aided detection of retinal abnormalities is cost-effective, feasiigetiob,
and doesn’t require efficiently trained clinicians to grade the images [1]. Moreover,
the automated retinal image analysis has the ability to provide the tiliagjgosis
provisions. These techniques are not a replacement to the ophthalmokibistthe
automated screening systems have the potential to assist the ophthalmologists in
large-scale screening programs by allowing cost-effective and acdlieafeosis
Automatic classification of DR through analysis of retinal images leasrbe an
established practice in ophthalmology. But these gradings are not spetifictypes
of lesions present in retinal images therefore segmented retinal pattfelaidates,
hemorrhages, and cotton wool spots) will assist the clinicians in grading.

The anatomy of retinal pathology varies with the types of leskexisdates appear
as a consequence of leakage of fats and proteins along with watealdrammally
permeable walls of retinal vessels. However, cotton wool spots surfacednédsral
regions which become deprived of oxygen due to blockage in arterioleg.ehta-
nate as fluffy white patches in the ocular fundus [5]. The blockade inosgtemay
instigate a pressure build up within the vessels. Significant anadymessure could
burst the vessels and result in origination of hemorrhages [5] &seeped irFig. 1.
The segmentation of these pathologies is a challenging and intricate task bleeause
color intensities lie in close proximity to that of other ocular structures.

Unprecedented achievements in classification tasks via Deep Learning techniques
in contemporary years call for their application in retinal image analysig\[6Gw
deep learning based techniques have been developed for classifyingeshe p
ence/absence of certain kind of retinal pathological structures. These me#ods
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localize the presence of retinal pathology but cannot precisely extract thegabponh
pathology through pixel-wise segmentation.

We propose an encoder-decoder based deep convolutional neural netivivek-arc
ture for simultaneously segmenting the retinal exudates, hemorrhagkgoton
wool spots. The network assigns each pixel to one of the four clagsesrrhages,
exudates, catin-wool-spots, or background. The task of retinal pathology segmen
tion has been modeled as a semantic segmentation problem. This typel-ofigéx
segmentation delineates each pixel as belonging to a particular object class. To the
limit of our knowledge, this is the first attempt which provides a deg@ming based
endto-end system for pixel wise segmentation of multiclass retinal pathologiek simu
taneously. This work can be further extended to build a computer aidegtdaitg
system based on segmented retinal pathology which can assist the hhades gs
well as improving the health care globally.

In the rest of the paper we illustrate a review of the related literature in section 2
the detailed description of proposed methodology in section 3, and descptio
experiments and evaluation in section 4. The last section is dedicatstussibns
and conclusion.

2 Related Work

A number of template, edge, and morphology based algorithms haverlesen
ed in the past for auto delineation of retinal landmarks [7] and ret@thbdlogy [8 9].
Several supervised and unsupervised neural networks based metheddsbaveen
employed for retinal image analysis. Many supervised methodologipseddblulti-
Layer Perceptron (MLRBupport Vector Machine (SVMArtificial Neural Network
(ANN) and decision treesl, 11]. Similarly, matched filtering and model basqut a
proaches have been scrutinized for the purpose of unsupervised retioahality
detection [4 12]. All of traditional methods required manual feature designing
through Scale-invariant Feature Tramsfio(SIFT), Speeded-Up Robust Features
(SURF), , and Histogram of Oriented Gradients (HOG) feature descrifi®rd4].
The explicit domain knowledge is mandatory for this kind of handtextafeature
extraction [6]. Most of the times, the results obtained through them aeespecia
ized on a dataset and generalization is not achieved. Recent advanceméenal in v
recognition via deep learning have invigorated researchers to employ theseuegshniq
in the field of ophthalmology as well. Automatic learning of intricate featurelsein
retinal images can be obtained by the use of Deep Neural Networks (DNN). BINN is
form of ANN in which arrangement of neurons is inspired byraeulisposition of
animal visual cortex. DNN provides the hierarchical feature extraction with limited
preprocessing of input images hence does not use hand crafted fggtures

Exudates appear as a consequence of leakage of lipids and proteins alomg-with
ter from abnormally permeable walls of retinal vessels. Segmentationudates
holds an imperative position for diagnosis of DR. A hybrid metinvdlving deep
learning methods and traditional image processing methods has beendabippte
Prentasic et al.,1p] to segment exudates from retinal images. They used traditional



4

MIUA2018, 022, v3 (final): ’Simultaneous Segmentation of Multiple Retinal Pathologies. ..

image processing methods to generate probability maps of retinal anatemical
tures. These probability maps were then combined with the output priybadap
generated by their 10 layered Convolutional Neural NetwoMN)Cto decrease the
number of false positives. The effectiveness of the DNN based methtbhiceatly
dependent on the size of dataset therefore size of dataset is a crucial parageeter in
learning techniques. But the medical image analysis datasets are very expebsive to
built thus deep learning in small data regime i.e. training of time conguamid high
sample complexity algorithms using limited resources is required. irtdsok meh-
odology has been proposed ®talora et al., 16] in their work for exudate classifie
tion. They provided a label efficient CNN along with an active learning algorithm
named as expected gradient length (EGL). The CNN model was based om&eNet
work and it was trained using transfer learning approach A noymbriance sa-
pling approach to decrease false positive rate in the segmentatiandaftes from
retinal images has been presented by Sureshjani et 4lin[their work for boosted
exudates segmentation. This type of sampling during the trairfingtwork avoids
the need of any post-processing steps. Their proposed mktypdeas based on a
CNN with 9 ResNet blocks. Teemethod [15-17] are not multi-focal i.e. they are
only focused towards segmentation of one kind of pathology ahe, tivhile DR
grading requires delineation of all retinal abnormalities simultaneously. Muls clas
CNNs had been employed classifying the presence/absence of multiple pathimlogie
retinal images. Ta#t al., [18] formulated a 10 layered neural network for detection of
exudates, microaneurysms, and hemorrhages from retinal fundges. They are not
providing precise localization, i.e. pixel-wise segmentation of retinal pafieslo

In this paper, we have presented an endnd system utilizing an encoder-decoder
based fully convolutional neural network that can perform pixelwigeeatation of
multi-class retinal pathologies simultaneously for precise localization ofltbeirda-
ries.

3  TheMethodology

In this paper we propose to use an encoder-decoder based fully ¢cimmablnetwork
architecture for semantic pixel-wise delineation of retinal pathology. Toweoped
network has adapted the well-known Segrdé] where the network learns high-d
mensional intricate feature maps and provides pixel wise segmentatietinaf d-
normalities by assigning particular object class label i.e. either ‘exudates’, ‘hemor-
rhages’, or ‘cotton wool spots’ to each pixel. Fig. 2 depicts the main workflow of the
proposed algorithm.

The input images are pre-processed before feeding them to werkethe followv-
ing subsections illustrate the pre-processing techniques and network details

3.1 Preprocessing

A pre-processing operation has been employed to obtain retinal im#besorma-
ized luminosity and enhanced contrast between retinal backgroundnataimical
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Fig. 2. (@) Input Retinal fundus image (b) Pre-processed image (c) Encoded®enase
Fully Convolutional Neural Network (d) Segmented Pathology

structures. The principal of the pre-processing algorithm ngiive linear transfe
mation i.e. subtraction of estimated background image from originabtéthage as
presented ing0]. The estimate of background is computed by convolving the original
image with a large arithmetic mean filter. The filter kernel size is not a pivatahp
eter; it is adjusted so that thesukant background estimation doesn’t contain any
visible ocular structure8Ve have used a filter kernel of size 69%69. The normalized
image (y) is obtained by pixel wise subtraction of the background estimategeima
(Iz¢) from morphologically opened imagg, ) as represented in equation (1).

Iy, y) = Ip(x,y) — Ipe(x,y) 1)

The fluctuating brightness during the image acquisition proza@sstroduce signif

cant intensity variations among the images. Thus, it will become difficuind a
single best possible segmentation technique for all the images. Theeefjiohal
linear transformation function has been used for the purpose of sbackction, U-
minosity variation reduction, and contrast enhancement. The global transfermatio
function will adjust the pixel values so that the complete rangeaf lgvels (0 to

255, with reference to 8 bit images) is covered.

IAD](X, y) = Iy(x,y) +128 — IMAX?PIXELS?VAL(xv y) (2)

0’ [N(x' y) < 0
Iy(x,y) = 255, Iy(x,y) > 255 3)
Lip; (x, ), otherwise

The homogenized imagdy( i.e. the shade corrected image is found by using
equation (3) wherdy is the normalized image, angp, is the adjusted image
Inax pixeLs var represents the pixel value with the maximum occurrence in the no
malized imagg,. The pixels with intensity values equali@sx pixers var belong to
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the background of fundus image. The transformation will madiinsities of these
pixels to 128; hence the other background pixels with different illatgin cond
tions will standardize themselves around this value. This global transfonnfiatio-

tion is obtained by,,; which is illustrated in equation (2). The retinal image obtained
after illumination correction and contrast enhancement through the matmttned

in this section is shown iRig. 3.

3.2 Patch-based Learning

The size of retinal lesions is small relative to the size of FOV, therefore, ipaded
learning has been employed which allows the deep network to preftisag/on the
pathology. Moreover, the contextual information of pathology plays atglivole in
decreasing the false positive rate. The relative location of pathologynalretiages

is maintained by partitioning the images using overlapped windowsrlapping
patches are obtained via sliding a window with N x N dimensions over thalretin
image with a stride of size ‘s’. The stride size is the proportion of overlap between
adjacent grids e.g. N/2, N/4 etc. We have used stride size of N/2 for creatitgs.
Also, we propose to extract all the patches from the region which liesletetgp
within the FOV because the region outside the FOV is of no practical impartance

(@) (b) (© (d)

Fig. 3. (a) 3 Channel Retinal image (b) Pre-homogenized retinal image@dthoverlappin
grids (c) Lesion at the edge of patch, may be misclassified (d) Completeiesantained i
a single patch, less chance of misclassification

As depicted irFig. 3, the overlapped grids prevent the patches with small pathology
located at the edge to be misclassified as normal patches. This patch extradtion met
od provides high quality candidates for the purpose of detecting reittelpgy.

3.3 Network Details

The basic building blocks of the network are convolution, up-sampliigsub sa-
pling. The network has equal number of encoder and decoder bldese blocks
are constructed using multiple convolutional, Batch Normalization (E4) &nd
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Rectified Linear Unit (ReLU)22] layers. The only difference is sub sampling layer
which is replaced witlup-sampling layer in the case of decoders.

The proposed network has three encoder blocks and an equal nundesoder
blocks proceeded by a pixel Classification layer. Each encoder block haswmn
lutional layers which extract a set of feature maps. The extracted feadpse are
then batch normalized to reduce the sensitivity to network initialization. i3 Hia-
lowed by the application of an element-wise threshold operation RelLltltoeta
ment of the input. Finally sub sampling (max pooling) operation if®peed to d-
tain translation invariance and avoid overfitting, reduce memory consumpy
providing an abstract representation of input to the network. The maxieature
value location (max-pooling indices) in each polling window is memorizedvery
feature map generated by an encoder; thus the segmentation resoluticovednp
Each encoder block has a corresponding decoder block, which unpdofsuitéea-
ture map using the max-pooling indices provided by the max-potdiyey of the
encoder block. The up-sampled sparse feature maps are then factortwolutional
layer which convolves them with trainable kernel banks to generate demgees fea
maps. These maps are then batch normalized and passed through nondinear R
layer. The second decoder block feeds the softmax |&8mhich classifies each
pixel independently. The softmax classifier generates an M channel outget ivita
each channel containing probability of every pixel belonging to a particulas, clas
where M is the number of object classes. The size of the probability enapaged by
softmax layer is the same as that of the input image. The sunuh#rg proposed
encoder-decoder fully convolutional neural netwisrklustrated inTable 1.

3.4  Training Setup

The methodology has been evaluated on a dataset of 100 images witiitestrsplit

of 90/10. The network is fed with image patches. The patch sizesewrhn accal-
ance with the smallest object present in input images to be segmentedvé\dtia
sen apatch size of 32x32 and stride size is maintained at ‘16’. The network is trained
with 214021image patchs extracted from 90 pre-processed (homogenized) images
for training. The weights of the network are initialized using the MSRight ini-
tialization method 24]. The dataset is biased because all images don’t have equal
number of pathological patches therefore class weighting method is usedetdheak
network robust to majority class biasness. Overfitting is avoideddoyporating L
regularization 25] weight decay function with the value of regularization parameter
0.0005. The learning rate was initialized with the value 0.001 and was patated
during training in accordance with the loss value. Cross entrggsyflmction 26]

with Stochastic Gradient Descent with Momentum (SGDM) optimization algorithm is
used for adjusting the learning rate dynamically. A mini-batch size ofi@@ge
patches is optimally selected along with shuffling of the image patcheseparh.
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Table 1. Network Summary
Layer Type Filter kernel Stride Padding No. of fea-
size ture maps

Input 32x32x1 - - -
Convolution 3x3x1 [1 1] 1111 64

Input BN - - - -

Encoder RelLU - - - -

Block Convolution 3x3x64 [1 1] 1111 64
BN - - - -
RelLU - - - -
Max Pooling 2x2 [2 2] [00O0O0 -
Max Unpooling - - - -
Convolution 3x3x64 [1 1] 1111 64
BN - - - -
RelLU - - - -

8“""”‘ Convolution 3x364  [1 1] M111 4

ecoder

Block BN ) ) ) )
RelLU - - - -
Softmax - - - -
Pixel Classification - - - -
Layer

4  Experimental Evaluation

41 Materials

The publically available dataset Messid@7][is used for the experiments and ewalu
tion purposes. The data-set is divided into 12 bases containing 120G imaigeoli-
tions 2240x1488 and 1400x960. DR severity grade annotationsailabte publick
ly for all the images but pathology based ground truths are not availabldavé
randomly selected 100 images from all the bases and retinal exudates;hages
and cotton wool spots are annotated by trained observers under the supeifvan
ophthalmologist. The annotations are verified by trained ophthalmologistliamd
cians from Armed Forces Institute of Ophthalmology (AFIO), IslamaBakistan

4.2  Performance M easures

The performance measures used to investigate the efficacy of the propasidnalg
are presented ihable 2.

Table 2. Performance Metrics for Retinal Image Analysis

Heading level Description
Sensitivity (SN) TP/TP+FN
Specificity (SP) TN/TN+FP
Accuracy (Acc) TP+TN/FOV pixel point

TP: True Positives TN: True Negatives
FP: False Positives FN: False Negatives
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4.3 Quantitative Results

The attained SN, SP, and Acc are tabulate@iable 3. This table also provides a
comparison of the quantitative measures of proposed algorithmsagaeviously
published algorithms. As presented in table, the proposed networkHiegegichidn-
est accuracy in the segmentation task of exudates, hemorrhagespttmd wool
spots among other represented studies. Please note that the comparisongaidene a
different datasets because image-based ground truth of these datasetvailable
publically so proposed network can’t be tested against them.

The pathology segmented by the proposed network and the giratimabverlaid
on original retinal fundus images are depicte#iiop 4.

Table 3. Comparison of Performance measures for pathology segmentation

Algorithm Datasets  Exudates Hemorrhages Cotton wool spots
Acc SP SN Acc SP SN Acc SP SN
) ) @) % % ) (%) (%) (%)

(Sinthanayothin Private

etal., 2002) database 99.7 885 - 88.7 775
(28

(Fraz et al.,

2017) pq Messidor 98.36 99.03 92.31

(Prentasic et al.,

2016) [L5] DRIDB - . 78

(Tanetal., CLEOP- i

2017) (L ATRA 98.73 87.58 98.93 62.57

(Hashimet al., :

2014) P9 S;'gagjse 7453 76.49 7178
(Buietal., DIARE-

Proposed Messidor 9924 9964 00.69 97.86 9854 8093 8865 8932 7287
M ethodology

5 Conclusion

In this research work we have presented an end to end fully ctiomaluencoder-
decoder based network architecture for pixel wise simultaneous classifichtieiix
nal pathology into obj& classes: ‘exudates’, ‘hemorrhages’, *cotton wool spots’. The
techniques available in literature only focus on one or two of the pgtbaldea-
tures. To the limit of our knowledge the proposed segmentation netsvtinke first
attempt of application of semantic segmentation networks for retinal pathedggy
mentation. The segmentation performance measures can be imprav&ddgilated
convolutions i.e. atrous convolutions because they exponentially indteadield of
view without decreasing the spatial dimensions.

This work has the ability to be incorporated in making an end tcemputer aided
diagnostic system for automatic and robust detection of retinal disddseslevé
oped approach helps in further optimization of pathology quantificatmduba of the
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QUARTZ software 81] which has been developed earlier by our research group.
Moreover, we are planning to make the annotated dataset publically available, which
enables other researchers to apply deep learning techniques for semargittatgm

of retinal pathologies.

(b)

(c) (d)
Exudates I Hemorrhages [ Cotton wool spots

Fig. 4. Original retinal funduga, c) with overlaid ground trutfb, d) with overlaid predicted

labels
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