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Abstract. The segmentation of retinal pathologies is the primitive and essential 
step in the development of automated diagnostic system for various systemic, 
cardiovascular, and ophthalmic diseases. The existing state-of-the-art machine 
learning based retinal pathologic segmentation techniques mainly aim at deline-
ating pathology of one kind only. In this context, we have proposed a novel 
end-to-end technique for simultaneous segmentation of multiple retinal pathol-
ogies (i.e., exudates, hemorrhages, and cotton-wool spots) using encoder-
decoder based fully convolutional neural network architecture. Moreover, the 
task of retinal pathology extraction has been modeled as a semantic segmenta-
tion framework which enables us to obtain pixel-level class labels. The pro-
posed algorithm has been evaluated on publically available Messidor dataset 
and achieved state-of-the-art mean accuracies of 99.24% (exudates), 97.86% 
(hemorrhages), and 88.65% (cotton-wool spots). The developed approach may 
aid in further optimization of pathology quantification module of the QUARTZ 
software which has been developed earlier by our research group.  

Keywords: Retinal Pathology, Diabetic Retinopathy, Deep Learning, Fully 
Convolutional Neural Networks, Encoder-Decoder, Semantic Segmentation 

1 Introduction 

Human retina is a non-invasive window to human circulatory system; therefore, au-
tomated analysis of human retina has potential to reveal important information about 
ocular as well as the systemic diseases such as Age-related Macular Degeneration 
(AMD) and Glaucoma, Diabetic Retinopathy (DR), Diabetic Macular edema, Hyper-
tensive retinopathy and multiple sclerosis [1].  A clear in-vivo view of the retina and 
vascular flow could help in the process of important structural and functional infor-
mation extraction from retina thereby assisting the clinicians in timely and accurate 
diagnosis. The advancements in image acquisition modalities during the last 160 
years allow non-invasive imaging of retina thus leading to efficient retinal landmarks 
extraction, pathology detection and disease classification. 
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DR is a chronic progressive sight-threatening disease. It contributes to 4.8% of the 
37 million cases of blindness throughout the world [2]. Due to the lack of resources, 
50% of the patients miss their ophthalmic examination sessions leading to irreversible 
damage to visual acuity. Timely treatment of DR can reduce the threat to visual acuity 
by 60% [3] therefore diagnosis of DR at the premature stage is very important. Manu-
al segmentation techniques adopted by clinicians are monotonous, time-consuming, 
inconvenient, labor intensive, observer driven, and require proficient skill [4] whereas 
computer-aided detection of retinal abnormalities is cost-effective, feasible, objective, 
and doesn’t require efficiently trained clinicians to grade the images [1]. Moreover, 
the automated retinal image analysis has the ability to provide the timely diagnosis 
provisions. These techniques are not a replacement to the ophthalmologists rather the 
automated screening systems have the potential to assist the ophthalmologists in 
large-scale screening programs by allowing cost-effective and accurate diagnosis. 
Automatic classification of DR through analysis of retinal images has become an 
established practice in ophthalmology. But these gradings are not specific to the types 
of lesions present in retinal images therefore segmented retinal pathology (exudates, 
hemorrhages, and cotton wool spots) will assist the clinicians in grading. 

The anatomy of retinal pathology varies with the types of lesions. Exudates appear 
as a consequence of leakage of fats and proteins along with water from abnormally 
permeable walls of retinal vessels. However, cotton wool spots surface in large retinal 
regions which become deprived of oxygen due to blockage in arterioles. They ema-
nate as fluffy white patches in the ocular fundus [5]. The blockade in arterioles may 
instigate a pressure build up within the vessels. Significant amount of pressure could 
burst the vessels and result in origination of hemorrhages [5] as represented in Fig. 1. 
The segmentation of these pathologies is a challenging and intricate task because their 
color intensities lie in close proximity to that of other ocular structures. 

Unprecedented achievements in classification tasks via Deep Learning techniques 
in contemporary years call for their application in retinal image analysis [6]. A few 
deep learning based techniques have been developed for classifying the pres-
ence/absence of certain kind of retinal pathological structures. These methods can 

(a) 

(b) 

(c) (d) 
Fig. 1. (a) Retinal image with pathologies (b) Hemorrhages (c) Soft Exudates (d) Hard Exu-
dates 
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localize the presence of retinal pathology but cannot precisely extract the boundary of 
pathology through pixel-wise segmentation.  

We propose an encoder-decoder based deep convolutional neural network architec-
ture for simultaneously segmenting the retinal exudates, hemorrhages, and cotton 
wool spots. The network assigns each pixel to one of the four classes: hemorrhages, 
exudates, cotton-wool-spots, or background. The task of retinal pathology segmenta-
tion has been modeled as a semantic segmentation problem. This type of pixel-wise 
segmentation delineates each pixel as belonging to a particular object class. To the 
limit of our knowledge, this is the first attempt which provides a deep learning based 
end-to-end system for pixel wise segmentation of multiclass retinal pathologies simul-
taneously. This work can be further extended to build a computer aided DR grading 
system based on segmented retinal pathology which can assist the human graders as 
well as improving the health care globally. 

In the rest of the paper we illustrate a review of the related literature in section 2, 
the detailed description of proposed methodology in section 3, and description of 
experiments and evaluation in section 4. The last section is dedicated to discussions 
and conclusion. 

2 Related Work 

A number of template, edge, and morphology based algorithms have been present-
ed in the past for auto delineation of retinal landmarks [7] and retinal pathology [8, 9].  
Several supervised and unsupervised neural networks based methods have also been 
employed for retinal image analysis. Many supervised methodologies adopted Multi-
Layer Perceptron (MLP), Support Vector Machine (SVM), Artificial Neural Network 
(ANN) and decision trees [10, 11]. Similarly, matched filtering and model based ap-
proaches have been scrutinized for the purpose of unsupervised retinal abnormality 
detection [4, 12]. All of traditional methods required manual feature designing 
through Scale-invariant Feature Transform (SIFT), Speeded-Up Robust Features 
(SURF), , and Histogram of Oriented Gradients (HOG) feature descriptors [13, 14]. 
The explicit domain knowledge is mandatory for this kind of hand crafted feature 
extraction [6]. Most of the times, the results obtained through them are more special-
ized on a dataset and generalization is not achieved. Recent advancements in visual 
recognition via deep learning have invigorated researchers to employ these techniques 
in the field of ophthalmology as well. Automatic learning of intricate features in the 
retinal images can be obtained by the use of Deep Neural Networks (DNN). DNN is a 
form of ANN in which arrangement of neurons is inspired by neuron disposition of 
animal visual cortex. DNN provides the hierarchical feature extraction with limited 
preprocessing of input images hence does not use hand crafted features [6].  

Exudates appear as a consequence of leakage of lipids and proteins along with wa-
ter from abnormally permeable walls of retinal vessels. Segmentation of exudates 
holds an imperative position for diagnosis of DR. A hybrid method involving deep 
learning methods and traditional image processing methods has been adopted by 
Prentasic et al., [15] to segment exudates from retinal images. They used traditional 
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image processing methods to generate probability maps of retinal anatomical struc-
tures. These probability maps were then combined with the output probability map 
generated by their 10 layered Convolutional Neural Network (CNN) to decrease the 
number of false positives. The effectiveness of the DNN based method is directly 
dependent on the size of dataset therefore size of dataset is a crucial parameter in deep 
learning techniques. But the medical image analysis datasets are very expensive to be 
built thus deep learning in small data regime i.e. training of time consuming and high 
sample complexity algorithms using limited resources is required. This kind of meth-
odology has been proposed by Otalora et al., [16] in their work for exudate classifica-
tion. They provided a label efficient CNN along with an active learning algorithm 
named as expected gradient length (EGL). The CNN model was based on LeNet net-
work and it was trained using transfer learning approach A novel importance sam-
pling approach to decrease false positive rate in the segmentation of exudates from 
retinal images has been presented by Sureshjani et al., [17] in their work for boosted 
exudates segmentation. This type of sampling during the training of network avoids 
the need of any post-processing steps. Their proposed methodology was based on a 
CNN with 9 ResNet blocks. These methods [15-17]  are not multi-focal i.e. they are 
only focused towards segmentation of one kind of pathology at a time, while DR 
grading requires delineation of all retinal abnormalities simultaneously. Multi class 
CNNs had been employed classifying the presence/absence of multiple pathologies in 
retinal images. Tan et al., [18] formulated a 10 layered neural network for detection of 
exudates, microaneurysms, and hemorrhages from retinal fundus images. They are not 
providing precise localization, i.e. pixel-wise segmentation of retinal pathologies.  

In this paper, we have presented an end-to-end system utilizing an encoder-decoder 
based fully convolutional neural network that can perform pixelwise segmentation of 
multi-class retinal pathologies simultaneously for precise localization of their bounda-
ries.  

3 The Methodology 

In this paper we propose to use an encoder-decoder based fully convolutional network 
architecture for semantic pixel-wise delineation of retinal pathology. The proposed 
network has adapted the well-known Segnet [19] where the network learns high di-
mensional intricate feature maps and provides pixel wise segmentation of retinal ab-
normalities by assigning particular object class label i.e. either ‘exudates’, ‘hemor-
rhages’, or ‘cotton wool spots’ to each pixel. Fig. 2 depicts the main workflow of the 
proposed algorithm. 
The input images are pre-processed before feeding them to the network. The follow-
ing subsections illustrate the pre-processing techniques and network details. 

3.1 Pre-processing 

A pre-processing operation has been employed to obtain retinal images with normal-
ized luminosity and enhanced contrast between retinal background and anatomical 

4 MIUA2018, 022, v3 (final): ’Simultaneous Segmentation of Multiple Retinal Pathologies . . .



5 

(c) 

(a) 

(d) (b) 

structures. The principal of the pre-processing algorithm is a naïve linear transfor-
mation i.e. subtraction of estimated background image from original retinal image as 
presented in [20]. The estimate of background is computed by convolving the original 
image with a large arithmetic mean filter. The filter kernel size is not a pivotal param-
eter; it is adjusted so that the resultant background estimation doesn’t contain any 
visible ocular structures. We have used a filter kernel of size 69×69. The normalized 
image (𝐼ே) is obtained by pixel wise subtraction of the background estimated image 
(𝐼஻ீ) from morphologically opened image (𝐼ை) as represented in equation (1). 

                𝐼ேሺݔ, ሻݕ =  𝐼ைሺݔ, ሻݕ −  𝐼஻ீሺݔ,           ሻ                       (1)ݕ
 

The fluctuating brightness during the image acquisition process can introduce signifi-
cant intensity variations among the images. Thus, it will become difficult to find a 
single best possible segmentation technique for all the images.  Therefore, a global 
linear transformation function has been used for the purpose of shade correction, lu-
minosity variation reduction, and contrast enhancement. The global transformation 
function will adjust the pixel values so that the complete range of gray levels (0 to 
255, with reference to 8 bit images) is covered. 
 𝐼஺஽௃ሺݔ, ሻݕ =  𝐼ேሺݔ, ሻݕ + ͳʹ8 −  𝐼ெ஺𝑋_௉ூ𝑋ா௅𝑆_𝑉஺௅ሺݔ,  ሻ          (2)ݕ
 𝐼ுሺݔ, ሻݕ =  {            Ͳ,                     𝐼ேሺݔ, ሻݕ < Ͳ                ʹ55,                  𝐼ேሺݔ, ሻݕ > ʹ55  𝐼஺஽௃ሺݔ, ሻ,         otherwiseݕ                (3) 

 
The homogenized image (𝐼ு) i.e. the shade corrected image is found by using 

equation (3) where 𝐼ே is the normalized image, and 𝐼஺஽௃ is the adjusted image.  𝐼ெ஺𝑋_௉ூ𝑋ா௅𝑆_𝑉஺௅ represents the pixel value with the maximum occurrence in the nor-
malized image𝐼ே. The pixels with intensity values equal to 𝐼ெ஺𝑋_௉ூ𝑋ா௅𝑆_𝑉஺௅ belong to 

Fig. 2.   (a) Input Retinal fundus image (b) Pre-processed image (c) Encoder Decoder based 
Fully Convolutional Neural Network (d) Segmented Pathology 
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the background of fundus image. The transformation will modify intensities of these 
pixels to 128; hence the other background pixels with different illumination condi-
tions will standardize themselves around this value. This global transformation func-
tion is obtained by 𝐼஺஽௃ which is illustrated in equation (2). The retinal image obtained 
after illumination correction and contrast enhancement through the method mentioned 
in this section is shown in Fig. 3. 

3.2 Patch-based Learning 

The size of retinal lesions is small relative to the size of FOV, therefore, patch based 
learning has been employed which allows the deep network to precisely focus on the 
pathology. Moreover, the contextual information of pathology plays a pivotal role in 
decreasing the false positive rate. The relative location of pathology in retinal images 
is maintained by partitioning the images using overlapped windows. Overlapping 
patches are obtained via sliding a window with N x N dimensions over the retinal 
image with a stride of size ‘s’. The stride size is the proportion of overlap between 
adjacent grids e.g. N/2, N/4 etc. We have used stride size of N/2 for creating patches. 
Also, we propose to extract all the patches from the region which lies completely 
within the FOV because the region outside the FOV is of no practical importance.     

As depicted in Fig. 3, the overlapped grids prevent the patches with small pathology 
located at the edge to be misclassified as normal patches. This patch extraction meth-
od provides high quality candidates for the purpose of detecting retinal pathology. 

3.3 Network Details 

The basic building blocks of the network are convolution, up-sampling and sub sam-
pling. The network has equal number of encoder and decoder blocks. These blocks 
are constructed using multiple convolutional, Batch Normalization (BN) [21] and 

  

  

(a) (b) (c) (d) 

Fig. 3. (a) 3 Channel Retinal image (b) Pre-homogenized retinal image with 50% overlapping 
grids (c) Lesion at the edge of patch, may be misclassified (d) Complete lesion is contained in 
a single patch, less chance of misclassification 
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Rectified Linear Unit (ReLU) [22] layers. The only difference is sub sampling layer 
which is replaced with up-sampling layer in the case of decoders. 
The proposed network has three encoder blocks and an equal number of decoder 
blocks proceeded by a pixel Classification layer. Each encoder block has two convo-
lutional layers which extract a set of feature maps. The extracted feature maps are 
then batch normalized to reduce the sensitivity to network initialization. This is fol-
lowed by the application of an element-wise threshold operation ReLU to each ele-
ment of the input. Finally sub sampling (max pooling) operation is performed to ob-
tain translation invariance and avoid overfitting, reduce memory consumption by 
providing an abstract representation of input to the network. The maximum feature 
value location (max-pooling indices) in each polling window is memorized for every 
feature map generated by an encoder; thus the segmentation resolution is improved.  
Each encoder block has a corresponding decoder block, which unpools its input fea-
ture map using the max-pooling indices provided by the max-pooling layer of the 
encoder block. The up-sampled sparse feature maps are then fed into a convolutional 
layer which convolves them with trainable kernel banks to generate dense feature 
maps. These maps are then batch normalized and passed through non-linear ReLu 
layer. The second decoder block feeds the softmax layer [23] which classifies each 
pixel independently. The softmax classifier generates an M channel output image with 
each channel containing probability of every pixel belonging to a particular class, 
where M is the number of object classes. The size of the probability map generated by 
softmax layer is the same as that of the input image. The summary of the proposed 
encoder-decoder fully convolutional neural network is illustrated in Table 1. 

3.4 Training Setup 

The methodology has been evaluated on a dataset of 100 images with a train/test split 
of 90/10. The network is fed with image patches. The patch size is chosen in accord-
ance with the smallest object present in input images to be segmented. We have cho-
sen a patch size of 32x32 and stride size is maintained at ‘16’. The network is trained 
with 214021 image patches extracted from 90 pre-processed (homogenized) images 
for training. The weights of the network are initialized using the MSRA weight ini-
tialization method [24]. The dataset is biased because all images don’t have equal 
number of pathological patches therefore class weighting method is used to make the 
network robust to majority class biasness. Overfitting is avoided by incorporating L2 
regularization [25] weight decay function with the value of regularization parameter 
0.0005. The learning rate was initialized with the value 0.001 and was later updated 
during training in accordance with the loss value. Cross entropy loss function [26] 
with Stochastic Gradient Descent with Momentum (SGDM) optimization algorithm is 
used for adjusting the learning rate dynamically. A mini-batch size of 200 image 
patches is optimally selected along with shuffling of the image patches every epoch. 
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Table 1. Network Summary 

 Layer Type Filter kernel  
size 

Stride Padding No. of fea-
ture maps 

Input  
Encoder 
Block 
 

Input 32×32×1 - - - 
Convolution 3×3×1 [1  1] [1  1  1  1] 64 
BN - - - - 
ReLU - - - - 
Convolution 3×3×64 [1  1] [1  1  1  1] 64 
BN - - - - 
ReLU - - - - 
Max Pooling 2×2 [2  2] [0  0  0  0] - 

Output  
Decoder 
Block 

Max Unpooling - - - - 
Convolution 3×3×64 [1  1] [1  1  1  1] 64 
BN - - - - 
ReLU - - - - 
Convolution 3×3×64 [1  1] [1  1  1  1] 4 
BN - - - - 
ReLU - - - - 
Softmax - - - - 
Pixel Classification 
Layer 

- - - - 

4 Experimental Evaluation 

4.1 Materials 

The publically available dataset Messidor [27] is used for the experiments and evalua-
tion purposes. The data-set is divided into 12 bases containing 1200 images in resolu-
tions 2240x1488 and 1400x960. DR severity grade annotations are available publical-
ly for all the images but pathology based ground truths are not available. We have 
randomly selected 100 images from all the bases and retinal exudates, hemorrhages, 
and cotton wool spots are annotated by trained observers under the supervision of an 
ophthalmologist. The annotations are verified by trained ophthalmologist and clini-
cians from Armed Forces Institute of Ophthalmology (AFIO), Islamabad, Pakistan.  

4.2 Performance Measures 

The performance measures used to investigate the efficacy of the proposed algorithm 
are presented in Table 2. 

Table 2. Performance Metrics for Retinal Image Analysis 

Heading level Description 

Sensitivity (SN) TP/TP+FN 

Specificity (SP) TN/TN+FP 

Accuracy (Acc) TP+TN/FOV pixel point 

TP: True Positives   TN: True Negatives 

FP: False Positives   FN: False Negatives 
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4.3 Quantitative Results 

The attained SN, SP, and Acc are tabulated in Table 3. This table also provides a 
comparison of the quantitative measures of proposed algorithm against previously 
published algorithms. As presented in table, the proposed network has achieved high-
est accuracy in the segmentation task of exudates, hemorrhages, and cotton wool 
spots among other represented studies. Please note that the comparison is done against 
different datasets because image-based ground truth of these datasets is not available 
publically so proposed network can’t be tested against them. 

The pathology segmented by the proposed network and the ground truth overlaid 
on original retinal fundus images are depicted in Fig. 4. 

Table 3. Comparison of Performance measures for pathology segmentation.  

Algorithm Datasets Exudates Hemorrhages Cotton wool spots 
Acc 
(%) 

SP 
(%) 

SN 
(%) 

Acc 
(%) 

SP 
(%) 

SN 
(%) 

Acc 
(%) 

SP 
(%) 

SN 
(%) 

(Sinthanayothin 
et al., 2002) 
[28] 

Private 
database 

- 99.7 88.5 - 88.7 77.5 - - - 

(Fraz et al., 
2017) [20] Messidor 98.36 99.03 92.31 - - - - - - 

(Prentašic et al., 
2016) [15] DRiDB - - 78 - - - - - - 

(Tan et al., 
2017) [18] 

CLEOP-
ATRA 

- 98.73 87.58 - 98.93 62.57 - - - 

(Hashim et al., 
2014) [29] 

Private 
database 

- - - - - - 74.53 76.49 71.78 

(Bui et al., 
2017) [30] 

DIARE-
TDB1 

- - - - - - 85.54 84.4 85.9 

Proposed 
Methodology Messidor 99.24 99.64 90.69 97.86 98.54 80.93 88.65 89.32 72.87 

5 Conclusion 

In this research work we have presented an end to end fully convolutional encoder-
decoder based network architecture for pixel wise simultaneous classification of reti-
nal pathology into object classes: ‘exudates’, ‘hemorrhages’, ’cotton wool spots’.  The 
techniques available in literature only focus on one or two of the pathological fea-
tures. To the limit of our knowledge the proposed segmentation network is the first 
attempt of application of semantic segmentation networks for retinal pathology seg-
mentation. The segmentation performance measures can be improved by using dilated 
convolutions i.e. atrous convolutions because they exponentially increase the field of 
view without decreasing the spatial dimensions. 
This work has the ability to be incorporated in making an end to end computer aided 
diagnostic system for automatic and robust detection of retinal diseases. The devel-
oped approach helps in further optimization of pathology quantification module of the 
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QUARTZ software [31] which has been developed earlier by our research group. 
Moreover, we are planning to make the annotated dataset publically available, which 
enables other researchers to apply deep learning techniques for semantic segmentation 
of retinal pathologies. 

 

 

Fig. 4. Original retinal fundus (a, c) with overlaid ground truth (b, d) with overlaid predicted 
labels  
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